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Objectives

» Evaluating ChatGPT’s proficiency in coding problem-solving

» Code quality Evaluatoion
» Incase of errors: Understanding the nature of errors
* Examines both GPT-3.5 and GPT-4 models
» Investigating potential data memorization during ChatGPT’s
traming
= Topics and Subtopics:
* Algorithms;
* Dynamic programming
» QGreedy algorithms
= Depth first search
* Divide and conquer
= Topological sort
= Data structures
* Priority queue

=  Array
= Hash tables
* Binary Search Tree

= Stack
=  Strings problems

1. Tools used

LeetCode: Online coding challenge platform

Pylint: Checks adherence to coding standards

2. Data collection and processing

LeetCode challenges entered into ChatGPT prompt
ChatGPT generated code is submitted to LeetCode
Submission Recording:

* Success, Human success rate, Error messages (If any)

Assessed code quality and reported problem type
= Errors, Warnings, Refactors and Conventions

3. Selection of coding problems
Complete Coding Challenges: 723 (1446 for both GPT models)
Incomplete Coding Challenges: 673 (1346 for both GPT models)

4. Experiment configurations
= Investigating ChatGPT's recall ability or inferencing capacity
with missing information.
=  Complete Challenges (Includes example, restrictions etc.)
* Incomplete Challenges (Missing example, restrictions
etc.)
= Investigating ChatGPT’s memorization of problems and
solutions.
= Public data till September 2021 used for ChatGPT training
* Train Set: LeetCode problems before September 2021
= Test Set: LeetCode problems after September 2021
» Incase of wrong answers: How wrong were ChatGPT’s wrong
solutions?
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= Specific questions where GPT-3 succeeds but GPT-4 fails
»  GPT-3 exclusively solves 7.13% problems in the train set
=  GPT-3 exclusively solves 2.08% in the test set

No. of Questions (%)

No. of Questions (%)

Topic Complete coding | Incomplete coding SHb-Lapie Complete coding | Incomplete coding
challenges challenges challenges challenges

Algorithm 422 (58.40%) 407 (60.48%) | Dynamic 132 (31.30%) 124 (30.47%)

Greedy 136 (32.23%) 129 (31.70%)

Depth first search 99 (23.46%) 99 (24.32%)

Divide and conquer 33 (7.82%) 33 (8.11%)

Topological sort 22 (5.21%) 22 (5.41 %)

Data Structure 248 (34.30%) 228 (33.88%) | Priority queue 82 (33.06%) 82 (35.96 %)
Array 49 (19.76%) 45 (19.74 %)
Hash table 43 (16.94%) 42 (18.42 %)
Stack 38 (15.73%) 33 (14.47 %)

Binary Search Tree

36 (14.52%) 26 (11.40 %)

Strings 53 (7.30%) 38 (5.65%)
Total Questions 723 673

Table 1: Percentage of LeetCode questions of different topics compared to the total no. and percentage of question no.
of sub-topics compared to the topics they belong to in the dataset.

1.2. Incomplete Coding Challenges

* Both models show similar performance levels complete or
incomplete questions

* Humans, with access to complete information on all
challenges, performed worse than both GPT models, which
worked with incomplete information

* In test set, both GPT-3 and GPT-4 show a significant reduction
in correct solutions compared to the training set

= QOverall behavior observed in the pattern of correctness could
be a combination of,

=  Some memorization
=  The robustness of the GPT models
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Fig 2: Performance of GPT models on the incomplete coding challenges

2. Cases that failed to produce a correct solution
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Fig 4: Percentage of all errors excluding
runtime errors

3. How wrong were ChatGPT’s wrong solutions?
= LeetCode provides the number of passed test cases
= Fraction of test cases passed
*= Asameasure of how wrong a solution is
Incorrect solutions often passed a very low percentage of test cases

4. Notable problems based on PyLint Report

= Error E0602: A variable that 100 ] ™= GPT3 §§

i ] mem GPT-4
was not defined is accessed ]

=  Warning W0621: When one
redefines a name from an
outer scope

= Refractor R0903: A small
number of public methods

= Convention C0103: Does not
adhere to the naming
conventions specific to its type
(Variable, function name etc.)
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Fig 5: Code quality issues seen in
ChatGPT solutions



