Unmasking the giant: A comprehensive evaluation of ChatGPT's proficiency in coding algorithms and data structures

Sayed Erfan Arefin, Tasnia Ashrafi Heya, Hasan Al-Qudah, Ynes Ineza, Abdul Serwadda

Objectives

- Evaluating ChatGPT's proficiency in coding problem-solving
- Code quality Evaluatoion
- Incase of errors: Understanding the nature of errors
- Examines both GPT-3.5 and GPT-4 models
- Investigating potential data memorization during ChatGPT's training
- Topics and Subtopics:
 - Algorithms;
 - Dynamic programming
 - Greedy algorithms
 - Depth first search
 - Divide and conquer
 - Topological sort
 - Data structures
 - Priority queue
 - Array
 - Hash tables
 - Binary Search Tree
 - Stack
 - Strings problems

Methods

1. Tools used

- LeetCode: Online coding challenge platform
- **Pylint:** Checks adherence to coding standards

2. Data collection and processing

- LeetCode challenges entered into ChatGPT prompt
- ChatGPT generated code is submitted to LeetCode
- Submission Recording:
- Success, Human success rate, Error messages (If any)
- Assessed code quality and reported problem type
 - Errors, Warnings, Refactors and Conventions

4. Experiment configurations

- Investigating ChatGPT's recall ability or inferencing capacity with missing information.
 - **Complete Challenges** (Includes example, restrictions etc.)
 - Incomplete Challenges (Missing example, restrictions etc.)
- Investigating ChatGPT's memorization of problems and solutions.
 - Public data till **September 2021** used for ChatGPT training
 - Train Set: LeetCode problems before September 2021
 - **Test Set**: LeetCode problems after September 2021
- Incase of wrong answers: How wrong were ChatGPT's wrong solutions?

Results

<u>1. How accurate is ChatGPT?</u>

1.1. Complete Coding challenges

- For train set challenges,
- GPT-4 is notably superior
- GPT-3's performance comparable to that of humans
- For test set challenges,
 - Humans surpass both models
- GPT-4's success rate is roughly double that of GPT-3

1.1.1. GPT-4 vs GPT-3:

GPT-3 GPT-4

Train set Test set Fig 3: Exclusive and inclusive correctness of GPT-3

1.2. Incomplete Coding Challenges

- Both models show similar performance levels complete or incomplete questions
- Humans, with access to complete information on all challenges, performed worse than both GPT models, which worked with incomplete information
- In test set, both GPT-3 and GPT-4 show a significant reduction in correct solutions compared to the training set
- Overall behavior observed in the pattern of correctness could be a combination of,
 - Some memorization
 - The robustness of the GPT models

2. Cases that failed to produce a correct solution

- Incorrect solutions can be:Run Time Error
- Incorrect response
- In terms of incorrect solutions (excluding runtime error),
- Training set:
- 60% to 77% of cases
- Test set:
- Occurred 80% of the
- vithout run-time errors 100 - GPT-3 GPT-4 40 - 60 - 60 - 60 - 60 - 60 - 60 - 60 - 60 - 60 - 60 - 60 - 60 - 70

25 GPT-3 GPT-4 70 65 52.88 Humar 60 51. 75 50 50 44 ę 40 (%) 26.38 30 12.60 20 10 0 Test Set Train Set

Dataset type Fig 1: Correctness of GPT-3, GPT-4

& Humans for Train and Test sets.

<u>3. Selection of coding problems</u>

- Complete Coding Challenges: 723 (1446 for both GPT models)
- Incomplete Coding Challenges: 673 (1346 for both GPT models)
- and GPT-4 for all the problems in the train and test datasets
- Specific questions where GPT-3 succeeds but GPT-4 fails
- GPT-3 exclusively solves 7.13% problems in the train set
- GPT-3 exclusively solves 2.08% in the test set

Торіс	No. of Questions (%)		Sub tonic	No. of Questions (%)	
	Complete coding	Incomplete coding	Sub-topic	Complete coding	Incomplete coding
	challenges	challenges		challenges	challenges
Algorithm	422 (58.40%)	407 (60.48%)	Dynamic	132 (31.30%)	124 (30.47%)
			Greedy	136 (32.23%)	129 (31.70%)
			Depth first search	99 (23.46%)	99 (24.32%)
			Divide and conquer	33 (7.82%)	33 (8.11%)
			Topological sort	22 (5.21%)	22 (5.41 %)
Data Structure	248 (34.30%)	228 (33.88%)	Priority queue	82 (33.06%)	82 (35.96 %)
			Array	49 (19.76%)	45 (19.74 %)
			Hash table	43 (16.94%)	42 (18.42 %)
			Stack	38 (15.73%)	33 (14.47 %)
			Binary Search Tree	36 (14.52%)	26 (11.40 %)
Strings	53 (7.30%)	38 (5.65%)			·
Total Questions	723	673			

 Table 1: Percentage of LeetCode questions of different topics compared to the total no. and percentage of question no. of sub-topics compared to the topics they belong to in the dataset.

time or more Fig 4: Percentage of all errors excluding

runtime errors

3. How wrong were ChatGPT's wrong solutions?

- LeetCode provides the number of passed test cases
- Fraction of test cases passed
- As a measure of how wrong a solution is
- Incorrect solutions often passed a very low percentage of test cases

Problem

4. Notable problems based on PyLint Report

- Error E0602: A variable that was not defined is accessed
- Warning W0621: When one redefines a name from an outer scope
- Refractor R0903: A small number of public methods
- Convention C0103: Does not adhere to the naming conventions specific to its type (Variable, function name etc.)

Problem Type Fig 5: Code quality issues seen in ChatGPT solutions