
Unmasking the giant: A comprehensive evaluation of ChatGPT’s
proficiency in coding algorithms and data structures

Keywords: Large Language Models, ChatGPT, Code Smells, Algorithms

Abstract: The transformative influence of Large Language Models (LLMs) is profoundly reshaping the Artificial Intel-
ligence (AI) technology domain. Notably, ChatGPT distinguishes itself within these models, demonstrating
remarkable performance in multi-turn conversations and exhibiting code proficiency across an array of lan-
guages. In this paper, we carry out a comprehensive evaluation of ChatGPT’s coding capabilities based on
what is to date the largest catalog of coding challenges. Our focus is on the python programming language and
problems centered on data structures and algorithms, two topics at the very foundations of Computer Science.
We evaluate ChatGPT for its ability to generate correct solutions to the problems fed to it, its code quality, and
nature of run-time errors thrown by its code. Where ChatGPT code successfully executes, but fails to solve the
problem at hand, we look into patterns in the test cases passed in order to gain some insights into how wrong
ChatGPT code is in these kinds of situations. To infer whether ChatGPT might have directly memorized some
of the data that was used to train it, we methodically design an experiment to investigate this phenomena.
Making comparisons with human performance whenever feasible, we investigate all the above questions from
the context of both its underlying learning models (GPT-3.5 and GPT-4), on a vast array sub-topics within the
main topics, and on problems having varying degrees of difficulty.

1 Introduction

Artificial Intelligence has made remarkable strides,
showing extraordinary potential in automating a wide
range of sectors. A significant contributor to this
progress has been the advancement in Large Lan-
guage Models (LLMs), which have essentially trans-
formed the landscape of AI technology. These mod-
els are trained to comprehend and generate text that
closely mimics human communication, responding
intelligently based on the input they receive. Among
these models, ChatGPT has emerged as a standout,
particularly due to its capacity for sustained, multi-
turn conversations. This enables it to maintain coher-
ence and context over extended dialogues.

In addition to drafting and refining content, ex-
ploring new topics, and brainstorming creative ideas,
ChatGPT has made a considerable impact in the realm
of software development. Its capabilities extend be-
yond generating code in multiple languages. Chat-
GPT can provide explanatory commentary for code
snippets, review existing code, and identify potential
issues or bugs. These functionalities have led to a
wealth of applications. For instance, it can serve as
an instructive tool for novice programmers, assist in
code reviews, and expedite the prototyping process,
to name just a few uses. As the emergence of new
use-cases continues at an impressive rate, there’s a

growing necessity for in-depth analysis of ChatGPT’s
coding capabilities. By understanding its strengths
and limitations, users can be given essential guidance
which can in turn enable them to make the most of
this groundbreaking family of technologies. Simulta-
neously, this understanding can highlight areas of im-
provement to the developers, ensuring the continual
evolution of these tools.

In this paper, we carry out an evaluation of Chat-
GPT’s coding capabilities based on what is to date the
largest catalog of coding challenges. Our focus is on
the python programming language, the most popular
language in a growing number of fields, including ar-
tificial intelligence, machine learning, data analytics,
automation, and, scientific computing (Yunhe Feng,
2023). All challenges solved in our research are cen-
tered on data structures and algorithms, two topics
at the very foundations of Computer Science. Most
real-world programming tasks involve some aspect
of algorithms and data structures (Khodiyar, 2021).
Whether it’s organizing data for efficient access (us-
ing appropriate data structures), or creating work-
flows to process data (using effective algorithms),
these concepts are fundamental to daily program-
ming. It is for these same reasons that these topics are
at the core of evaluations of human candidate abilities
during coding job interviews (bit, 2023). By virtue
of the number and diversity of coding challenges



posed to ChatGPT, variety of scenarios studied and at-
tributes evaluated, this paper is to our knowledge the
most comprehensive evaluation of ChatGPT’s coding
proficiency in the algorithms and data structures space
to date.

We evaluate ChatGPT not only for its ability to
generate correct solutions to the problems fed to it,
but also for its code quality, and nature of run-time
errors thrown by its code. Where ChatGPT code suc-
cessfully executes, but fails to solve the problem at
hand, we compile statistics, based on test cases evalu-
ated, that provide some insights into how wrong Chat-
GPT code is in these kinds of situations. To gain some
insights into whether ChatGPT might have directly
memorized some of the data that was used to train it,
we methodically design an experiment to investigate
this phenomena. We investigate all these questions
from the context of both its publicly available under-
lying models (GPT-3.51 and GPT-4), a vast array sub-
topics within the main topics, and varying degrees of
difficulty of the problems.

The paper makes the following four primary con-
tributions:

Evaluating correctness of ChatGPT coding so-
lutions across a diverse spectrum of algorithms
and data structures problems: Utilizing a compre-
hensive set of 2,792 coding prompts, we evaluate the
accuracy of coding solutions produced by ChatGPT,
spanning a diverse array of algorithms and data struc-
tures topics. Our analysis explores five key subtopics
within algorithms: dynamic programming, greedy al-
gorithms, depth-first search, divide and conquer, and
topological sort. Concurrently, we investigate five
fundamental areas within data structures, namely, pri-
ority queues, arrays, hash tables, stacks, and binary
search trees. In addition, we conduct a detailed ex-
amination of string manipulation. This is a topic that
intersects both data structures and algorithms, yet it
boasts its own distinctive nuances, particularly con-
cerning operations, and various string-specific data
structures and algorithms. Central to our experiments
is LeetCode (Code, 2023), a platform renowned for its
diverse collection of coding challenges. LeetCode’s
built-in compiler enables the evaluation of submitted
solutions. The use of this platform not only facilitates
an in-depth assessment of the correctness of a coding
submission but also allows us to compare each solu-
tion against a historical catalog of solutions submitted
by millions of developers over the years. In this way,
we are able to address the increasingly prevalent ques-
tion: How does AI performance measure up against
human performance?

1In parts of the paper, we also refer to this by the base
model number, GPT-3

Evaluation of ChatGPT’s code quality: Beyond
the correctness of a coding solution, another key mea-
sure of coding proficiency is the code quality, a char-
acterization of how well code is written in relation
to well-established good practices of programming.
For this evaluation, we use PyLint (Pylint, 2023),
a widely-used tool in the Python programming lan-
guage for checking a module for coding standards,
and certain types of code smells. We use this to
meticulously evaluate ChatGPT’s code for details of
warnings, adherence to conventions, refactoring hints,
and errors. We carry out this analysis regardless of
whether ChatGPT provides a wrong or correct solu-
tion to the problem at hand, since the notion of code
quality continues to be insightful either way. Whether
it is a beginner programmer using ChatGPT during
their learning activities, a more experienced devel-
oper importing segments of ChatGPT-generated code
into a project, or a researcher looking into areas to
improve LLMs such as ChatGPT, these code quality
assessments should offer some useful insights.

Examining ChatGPT for potential memoriza-
tion of training data: One of the fears surrounding
LLMs is that they might memorize (potentially pri-
vate) data that shows up in the training set. We de-
sign an experiment to provide some idea of how Chat-
GPT might be affected by this problem. In particular,
we subject ChatGPT to a series of incomplete coding
challenges in which critical information was left out.
These questions are drawn from part of the dataset
that was used to train ChatGPT, albeit with the afore-
mentioned pieces of information left out. We find
ChatGPT to generate correct code for some of these
challenges, suggesting that it might have memorized
these problems and their solutions. While this experi-
ment would not confirm 100% whether memorization
has occurred, it can still provide some perspective to
the end-user who is trying to make the decision on
whether to allow their data to be used in the training
set. The contribution is also of value to the AI com-
munity who are working to develop and tune LLMs
such as ChatGPT.

Assessing the level of “wrongness” of wrong
ChatGPT solutions: When ChatGPT generates a
wrong solution to a problem, it is still insightful to
gauge the extent to which this solution is wrong. For
example, a marginally wrong solution might be fix-
able through minor tweaks. To study this phenom-
ena, we evaluated the test cases passed by ChatGPT-
generated programs which executed successfully yet
failed to solve the problem at hand. Findings on this
question should be informative to not only experi-
enced programmers seeking to import ChatGPT code
into their projects but also beginners using ChatGPT



as a programming tutor.
Paper Organization: The rest of the paper is or-

ganized as follows. We discuss related research in
Section 2 and our data collection experiments in Sec-
tion 3. We then present our findings in Section 4, and
conclusions in Section 5.

2 Related Research

We categorize past research into two streams, namely:
(1) research that evaluated ChatGPT’s coding capabil-
ities, and, (2) research that evaluated ChatGPT’s per-
formance on tasks other than coding. Below, we dis-
cuss these research streams and how our work differs
from them.

2.1 Research on ChatGPT’s coding
capabilities

Noever et al. (Noever and McKee, 2023), conducted
a study to assess the ability of ChatGPT to conduct
CRUD (Create Read Update Delete) operations on
data science datasets. This evaluation utilized four
well-known datasets: the Iris (Afifi et al., 2020), Ti-
tanic (Datta, 2021), Boston Housing(Sanyal et al.,
2022), and Faker (Romani, 2020) datasets. The study
showed that ChatGPT successfully emulated a Python
interpreter, autonomously generating code and deliv-
ering the expected output. These results suggest Chat-
GPT possesses the necessary competencies to manage
structured datasets and execute CRUD operations ef-
fectively. Another study by Biswas et al. (Biswas,
2023) underlined ChatGPT’s potential as an intelli-
gent assistant to programmers. In this study, ChatGPT
demonstrated the ability to provide support in pro-
gramming tasks such as code completion, bug fixing,
and code refactoring among others. The study also
showed that ChatGPT could synthesize code snippets
based on predefined specifications, consequently min-
imizing the manual effort typically associated with
code development from scratch.

In a study employing a methodology similar to
ours (Bubeck et al., 2023), ChatGPT was tasked to
write Python functions. Initially, the HumanEval
dataset was leveraged to gauge ChatGPT ’s program-
ming ability. To prevent any potential effects of mem-
orization from tainting the results, additional evalua-
tion was done using a set of 100 LeetCode problems
which, at the time of ChatGPT’s training comple-
tion, were not available on the Internet. Performance
of GPT-4 was bench-marked against other models as
well as against human performance metrics derived

from LeetCode contest results. The results demon-
strated that GPT-4 performs better in comparison to
the other LLM models such as text-davinci-003 (the
base model of ChatGPT), Codex (code-davinci-002),
and CODEGEN-16B.

In a related investigation (Tian et al., 2023), re-
searchers undertook a comprehensive three-pronged
assessment of ChatGPT’s capabilities. First, they
probed its ability to translate natural language into
code, using two LeetCode datasets containing ques-
tions of varied complexity as prompts. The sec-
ond phase of the evaluation aimed to ascertain Chat-
GPT’s utility as a code rectification tool, tasking it
with the correction of a broad spectrum of incor-
rect codes sourced from a programming assignments
benchmark. The final aspect of the study scrutinized
ChatGPT’s capacity to reason on both correct and in-
correct code samples drawn from a student assign-
ment benchmark, thereby testing its code comprehen-
sion and interpretive abilities. The authors of this pa-
per also compared the performance of the coding so-
lutions generated by ChatGPT against other models
like Codex (Dex), and CodeGen (Gen).

While both works in (Bubeck et al., 2023) and
(Tian et al., 2023) demonstrated the commendable
reasoning and coding capabilities of ChatGPT, they
also highlighted the model’s shortcomings. It was
observed that ChatGPT, while generally proficient,
can occasionally falter by generating erroneous codes,
or those that are semantically incorrect or syntacti-
cally invalid. Moreover, its effectiveness can be com-
promised when dealing with more intricate program-
ming tasks, suggesting a potential struggle with com-
prehensive understanding of complex instructions or
domain-specific problems.

In (Yunhe Feng, 2023), a crowdsourcing data-
driven framework to investigate the code generation
performance of ChatGPT was presented. The paper
employed a hybrid keyword expansion method to fil-
ter relevant social media posts about ChatGPT’s code
generation on platforms like Twitter and Reddit, re-
sulting into the collection of 316,000 tweets and 3,200
Reddit posts spanning from December 1, 2022, to
January 31, 2023. Analysis of these tweets provided
answers to a number of questions, including: the most
popular programming languages in ChatGPT usage,
programming scenarios, tasks, and purposes that peo-
ple use ChatGPT for, temporal distribution of the dis-
cussion on ChatGPT code generation, stakeholders’
perception of ChatGPT code generation, and nature of
errors in the Python code snippets generated by Chat-
GPT.

These papers align with our fundamental aim to
delineate the coding capabilities of ChatGPT. How-



Table 1: Comparing our research with the sub-set of related works that are most similar to our work

Publications
(Noever and

McKee, 2023) (Biswas, 2023) (Tian et al.,
2023) (Bubeck et al., 2023) This workResearch focus

Experiment details
Number of
coding prompts Not specified Not specified 240 264 2,792

Separate train
and test problems ✓ ✓

Coding problems
solved

Dynamic algorithms ✓

Individual algorithms
topics not specified

✓
Greedy algorithms ✓
Depth first search ✓
Divide and conquer ✓
Topological sort ✓ ✓
Priority queue ✓
Arrays ✓ ✓
Hash tables ✓ ✓
Stacks ✓
Binary search trees ✓
Strings ✓ ✓

Attributes of ChatGPT
solutions evaluated

Correctness of solutions ✓ ✓ ✓ ✓
Runtime errors ✓
Memorization of trainset ✓ ✓
Analysis of wrong solutions ✓

Code quality evaluation

Error classification ✓
Warnings ✓
Conventions ✓
Refactoring ✓

Model evaluated GPT-3 ✓ ✓ ✓ ✓
GPT-4 ✓ ✓

ever, our research diverges from these studies in sev-
eral significant respects. These differences include
the scale of our experiments, the types of coding tasks
employed, the specific coding modalities examined,
and the variety of language models evaluated. We
delve into these distinctions next. For the four papers
most similar to our work, a summary of some of these
variances can also be viewed in Table 1.

1. Size of the experiment: Our study is based on
a total of 2,792 coding challenges distributed
across the various experimental settings used in
our study. To the best of our knowledge, this
constitutes the most extensive study to date that
investigates ChatGPT’s coding capabilities. By
comparison, the largest study (see (Bubeck et al.,
2023)) among the aforementioned related works
utilized a total of 264 coding prompts. In exper-
imental research of this nature, the magnitude of
the experiment is crucial in bolstering the statisti-
cal significance of the results. Through exposure
to a wide array of prompts, one can better stimu-
late and scrutinize the diverse potential strengths
and limitations of the technology in question.

2. Variety of coding tasks used in experiment: Our
work notably expands upon the studies by Bubeck
et al. and Tian et al., which are closest to ours in
terms of focusing on programming tasks concern-
ing data structures and algorithms. Bubeck et al.
and Tian et al. both used LeetCode problems to

assess ChatGPT’s coding performance. In their
study, Bubeck et al. gathered a total of 264 ques-
tions for their dataset, of which 100 were from
LeetCode. However, they did not specify the par-
ticular topics of the LeetCode problems included
in their dataset. On the other hand, Tian et al.
focused specifically on certain subtopics for their
collection of LeetCode problems. They concen-
trated on arrays and hash tables within the domain
of data structures and sorting problems within the
realm of algorithms along with some coding prob-
lems related to strings. Our research, however, ex-
tends far beyond these areas.
We delve into five subtopics under algorithms:
dynamic programming, greedy algorithms, depth
first search, divide and conquer, and topological
sort. Simultaneously, we explore five areas within
data structures: priority queues, arrays, hash ta-
bles, stacks, and binary search trees alongside
problems related to strings. By broadening the
scope of our study, we aim to offer the community
significant insights into ChatGPT’s coding profi-
ciency across a wide array of fundamental Com-
puter Science problems not previously explored.
This comprehensive approach should further illu-
minate the platform’s capabilities.

3. Coding quality evaluation: Most of the above
cited works have primarily concentrated on the
correctness of the final coding solutions produced



by the language models. Our approach, however,
encompasses more than this criterion. We eval-
uate both GPT-3 and GPT-4 against a compre-
hensive range of quality metrics, including but
not limited to, coding conventions, intricacies of
coding errors, warnings, and refactoring. Such
analysis is of paramount importance for numer-
ous reasons. Language models like ChatGPT are
increasingly becoming the go-to tools for budding
programmers, while even seasoned developers are
incorporating extensive blocks of GPT-produced
code into their projects. As these tools continue to
evolve, our analysis will be instrumental in guid-
ing enhancements that will render them even more
beneficial to the user community. The work in
(Yunhe Feng, 2023) includes some statistics on
coding errors (as assessed by Flake8), but has a
fundamentally different thrust from us given its
focus on leveraging the chatter generated on so-
cial media to answer questions about ChatGPT’s
code generation and general usage.

4. Language models under evaluation: Our work is
focused on GPT-4 and its predecessor GPT-3 (we
use model 3.5 particular), which are the state-of-
the art models on the consumer market via Chat-
GPT. We analyze each of them individually, and
also compare them against each other based on
exactly the same coding challenges. The works
in (Noever and McKee, 2023), (Biswas, 2023),
and (Tian et al., 2023), having been published be-
fore GPT-4 came out, focused on evaluating GPT-
3, and how it compares to older models such as
Codex and CodeGen. The closest to us is the
work in (Bubeck et al., 2023) since it also per-
forms coding performance evaluations on GPT-4.
However, this work is put apart from our work by
several earlier described features, namely, the size
of the experiment, variety of computing problems
solved and the fact that they do not undertake cod-
ing quality evaluations.

5. Training set memorization and assessment of
wrong solutions: Finally, the evaluation of Chat-
GPT’s memorization behavior and the assessment
of the extent of “wrongness” of ChatGPT’s wrong
solutions (recall Section 1) are novelties in our
work that have not been studied by any of the pre-
vious works on ChatGPT.

2.2 Research on ChatGPT’s
performance on tasks other than
coding

Much more distant from our research is the body of
work which has evaluated ChatGPT on tasks other
than coding.

For example, in (Gilson et al., 2022), ChatGPT
was trained on medical texts and assessed for its abil-
ity to answer United States Medical Licensing Exam-
ination (USMLE) questions. It achieved an average
accuracy of 61.2%, lower than human test-takers. It
was found to perform well on recall-based questions,
but poorly on reasoning-based questions. The works
in (Bubeck et al., 2023; Pardos and Bhandari, 2023)
evaluated ChatGPT in the domain of mathematical
understanding. In (Bubeck et al., 2023), it was found
that the model showed proficiency in creative reason-
ing but lacked critical reasoning skills. It demon-
strated technical proficiency in algorithms but made
frequent mistakes in calculations and notation. The
authors concluded that while further training might
help alleviate some issues, fundamental limitations
remained.

Frieder et al. (Frieder et al., 2023) developed
the GHOSTS dataset containing graduate-level math
test questions. They evaluated ChatGPT’s math abil-
ities on this dataset. In the Grad Text dataset,
ChatGPT performed well, but in the Olympiad-
Problem-Solving and Holes-in-Proofs datasets, it
scored poorly. In the MATH dataset, ChatGPT pro-
vided correct solutions in only 26% of cases. These
findings indicate that ChatGPT’s math abilities are
inferior to those of math graduate students. While
ChatGPT can comprehend math problems, it strug-
gles to generate correct solutions. The researchers in
(Pardos and Bhandari, 2023) compared the effective-
ness of hints generated by ChatGPT and human tu-
tors in algebra topics: Elementary and Intermediate
algebra. However, the learning gains from human-
authored hints were significantly higher than those
from ChatGPT hints in both topic areas.

The works in (Zhuo et al., 2023) focused on Chat-
GPT’s linguistic capabilities and the ethtical issues
surrounding large language models. In (Zhuo et al.,
2023), Zhuo et al. found that ChatGPT posed is-
sues such as moral hazards, bias, reliability, robust-
ness, and toxicity. They discussed several ethical
challenges of advanced language models and offered
suggestions for designing ethical models. The authors
of (Bang et al., 2023) evaluated ChatGPT on various
NLP tasks and found that it had limitations in under-
standing non-Latin script languages. They also found
that it exhibited unreliable reasoning.



This collection of works shares with us the ob-
jective of understanding the performance of chatGPT
and its underlying models (GPT-3 and GPT-4). That
said. these works are so far apart from our research
which is focused on the coding performance of Chat-
GPT.

3 Data collection experiments

In this section we describe our data collection tools
and environment, and provide details of the coding
challenges presented to ChatGPT in our study.

3.1 Choice of tools used in our
experiments

The two primary tools used during our ChaGPT
evaluations were LeetCode (Code, 2023) and Pylint
(Pylint, 2023). LeetCode is an online platform with a
wide range of coding challenges and interview prepa-
ration materials. It offers various problem difficulty
levels across a wide range of topics and supports an
extensive selection of programming languages. Most
of the problems on LeetCode are inspired by, or di-
rectly drawn from interview questions at major tech
companies such as Google, Amazon, Facebook, Mi-
crosoft, and so on. LeetCode contains a built-in com-
piler that not only assesses the code submitted by
users but also compares it to other submissions. It
evaluates code submissions based on an elaborate cat-
alog of test cases. These exceptional features make
LeetCode a solid platform for evaluating coding profi-
ciency, and hence we use it in our experiments as both
the source of coding challenges, and as a platform to
evaluate the solutions presented to the challenges (See
Figure 1 for an example of a LeetCode question sub-
mitted to ChatGPT, and the coding solution generated
by ChatGPT during our experiments).

To evaluate the code quality of the programming
solutions generated by ChatGPT, we used the Pylint
(Pylint, 2023) Python library. PyLint performs static
analysis on Python code to identify adherence to cod-
ing standards and style guidelines, syntax, type, and
logical errors, unused code, refactoring suggestions,
etc. The comprehensiveness of code analysis pro-
vided by Pylint was the main reason for selecting this
library in our experiments. It is noteworthy that the
Pylint evaluations are undertaken in our experiments
even when a ChatGPT code solution fails to solve the
problem at hand. This is so because we are interested
in examining the quality of ChatGPT’s code regard-
less of whether a solution is wrong or not.

3.2 Data collection details

3.2.1 The process

We copied each coding challenge from LeetCode and
manually pasted it into the ChatGPT input screen.
The manual approach allowed us to visually inspect
each coding response produced by ChatGPT before
pushing it further into our evaluation pipeline. Us-
ing the API would have made it difficult for us to
flag cases where ChatGPT generated incomplete re-
sponses. For each coding solution generated by
ChatGPT, we first input the code into LeetCode and
recorded three pieces of information from the Leet-
Code output: (1) a binary value of whether the solu-
tion passes the question or not, (2) the proportion of
human submissions that passed this question since it
was published, (3) an error message if the code pro-
duces an error. We also input each coding solution
into Pylint which analyzed code for quality issues and
returned a problem type, ID for this problem type, and
a textual description of the message.

3.2.2 Experiment configurations

Across all problems solved during our experi-
ments, we had ChatGPT solve 2,792 coding chal-
lenges/questions, and hence generate 2,792 differ-
ent python programs. About 52% (or 1,446) of
these programs were part of what we refer to as the
complete coding challenges. In these challenges, we
entered each LeetCode question in its entirety into
ChatGPT. In other-wards we entered the question,
and supporting information provided by LeetCode,
which includes constraints/conditions, and examples
that clarify the question or nature of the expected so-
lution. The 1,446 programs generated by ChatGPT
during these complete coding challenges are further
subdivided into two: 723 programs generated with
GPT-3.5 as the underlying learning model, and 723
programs generated with GPT-4 as the underlying
learning model. To enable comparison on an equal
footing, the coding challenges submitted to GPT-3.5
were exactly the same as those submitted to GPT-4.
This implies that the total number of unique coding
challenges posed to ChatGPT in this portion of our
experiment were 723.

The other 48% (or 1,346) of the challenges we
posed to ChatGPT (and hence python programs gen-
erated by ChatGPT) were what we refer to as the
incomplete coding challenges. Half (or 673) of the
coding prompts were processed by GPT-3.5 and the
other half by GPT-4. For the same reason previously
discussed under the complete coding challenges, the
questions posed to GPT-3.5 were also exactly the



(a) A LeetCode question entered on the ChatGPT prompt
(b) Part of the code generated by ChatGPT in response to the
question

Figure 1: Screenshot for one of the coding challenges posed to ChatGPT during our experiments

same as those posed to GPT-4. Hence the number
of unique coding questions posed to ChatGPT in this
portion of the experiment was 673.

In these incomplete coding challenges, the ques-
tions posed to ChatGPT had missing information. As
mentioned in Section 1, the idea behind this experi-
ment design was to investigate possibilities of Chat-
GPT memorizing parts of the training set. If Chat-
GPT can be found to generate correct source code for
problems for which key information is missing, this
could be strongly suggestive of possible memoriza-
tion of training data that intersects with a portion of
our questions and their answers. This could however
also imply that ChatGPT is too smart that it intelli-
gently fills in the missing information and success-
fully solves the incomplete question. We navigate the
divide between these two possibilities by undertak-
ing this code memorization experiment on both the
train and test sets (see description of these two sets
and their rationale in Section 3.2.4).

To collect data for this code memorization exper-
iment, we input each question into ChatGPT, while
leaving out the constraints and examples, two key
pieces of information that not only clarify the prob-
lem, but also the nature of the expected solution.

We use Figure 2 to illustrate our notion of com-
plete and incomplete coding challenges. The figure
shows a full LeetCode question that includes the prob-
lem text, a couple of examples and the constraints.
Using this question in our incomplete coding chal-
lenges, we only entered the problem text into Chat-
GPT and left out the two examples, and the three con-

straints. In the complete coding challenges on the
other hand, we entered everything shown in Figure
2 into ChatGPT.

3.2.3 Selection of coding problems

For reasons described in Section 1, the coding prob-
lems used in our experiments were on algorithms,
data structures and strings. Table 2 shows how
our problems were distributed across topics and sub-
topics for both the complete and incomplete coding
challenges. Observe that the number of problems on
strings are far less than the number of problems from
the other topics. We set these question proportions to
approximately mirror the topic and sub-topic share of
the LeetCode database. Table 3 shows the distribu-
tion of our questions across the difficulty levels spec-
ified on LeetCode. Observe that the questions hav-
ing medium-level difficulty dominate our problem-set
while the easy questions are fewest.

This distribution of difficulty levels is again a de-
sign choice meant to ensure that the difficulty levels of
our problems approximately reflect those of the Leet-
Code database.

Figure 3 provides an in-depth view of how the
difficulty levels of our problems compare to those of
the entire LeetCode database. The X-axis shows the
acceptance rates of the questions, while the Y-axis
shows the number of questions which had a given ac-
ceptance rate. The figure shows that the distribution
of acceptance rates of our chosen questions closely
aligns with that of the entire LeetCode database. Be-
cause LeetCode is in some ways now established as



Problem: There are n projects numbered from 0 to n - 1. You are given an integer array milestones

where each milestones[i] denotes the number of milestones the ith project has.

You can work on the projects following these two rules:
1. Every week, you will finish exactly one milestone of one project. You must work every week.
2. You cannot work on two milestones from the same project for two consecutive weeks.

Once all the milestones of all the projects are finished, or if the only milestones that you can
work on will cause you to violate the above rules, you will stop working. Note that you may
not be able to finish every project's milestones due to these constraints.

Return the maximum number of weeks you would be able to work on the projects
without violating the rules mentioned above.

Example 1:
Input: milestones = [1,2,3]
Output: 6
Explanation: One possible scenario is:
- During the 1st week, you will work on a milestone of project 0.
- During the 2nd week, you will work on a milestone of project 2.
- During the 3rd week, you will work on a milestone of project 1.
- During the 4th week, you will work on a milestone of project 2.
- During the 5th week, you will work on a milestone of project 1.
- During the 6th week, you will work on a milestone of project 2.
The total number of weeks is 6.

Example 2:
Input: milestones = [5,2,1]
Output: 7
Explanation: One possible scenario is:
- During the 1st week, you will work on a milestone of project 0.
- During the 2nd week, you will work on a milestone of project 1.
- During the 3rd week, you will work on a milestone of project 0.
- During the 4th week, you will work on a milestone of project 1.
- During the 5th week, you will work on a milestone of project 0.
- During the 6th week, you will work on a milestone of project 2.
- During the 7th week, you will work on a milestone of project 0.
The total number of weeks is 7.
Note that you cannot work on the last milestone of project 0 on 8th week because it would violate
the rules. Thus, one milestone in project 0 will remain unfinished.

Constraints:
n == milestones.length
1 <= n <= 105

1 <= milestones[i] <= 109

Figure 2: Example of a full LeetCode question that illustrates the difference between our complete and incomplete coding
challenges. In the incomplete coding challenges, the 2 examples and 3 constraints shown in the figure were omitted as only
the problem text was input into ChatGPT. In the complete coding challenges, the problem text, 2 examples and 3 constraints
were all input into ChatGPT.



a reference standard for coding proficiency (e.g. for
Big Tech interview prep), tailoring our problem distri-
bution closely to patterns exhibited by the entire Leet-
Code database should enable the community to more
rigorously contextualize our findings on ChatGPT’s
performance.

3.2.4 Why we undertake evaluations on both the
training and testing sets

ChatGPT was trained using a vast array of content
available on the internet before the release of the
GPT-4 model for ChatGPT. In evaluating its perfor-
mance, it’s crucial to distinguish between informa-
tion available before and after the launch of GPT-4
for ChatGPT. Typically, in machine learning, perfor-
mance benchmarks are based on data not included
in the training process. However, due to ChatGPT’s
unique application scenarios, evaluations need to con-
sider both pre- and post-release data. Given that Chat-
GPT was trained on a comprehensive range of inter-
net content, many real-life user queries, especially in
coding, may have been part of its training set. For
instance, a student learning coding through ChatGPT
might ask questions that were already answered on
coding forums before the release of GPT-4 for Chat-
GPT, making these part of the training data.

Evaluating ChatGPT using questions and answers
that were available on the internet before GPT-4’s re-
lease could better reflect its performance in handling
such queries. Conversely, using queries that never ex-
isted on the internet before GPT-4 for ChatGPT can
better gauge its ability to tackle novel questions. This
involves ChatGPT synthesizing various information
snippets to formulate correct solutions. Both perspec-
tives are critical for end-users and AI practitioners,
as ChatGPT’s real-world performance will likely be a
blend of these scenarios. In this paper, we use ’train
set’ and ’test set’ to refer to queries and their solutions
that existed on the internet before and after the release
of GPT-4 for ChatGPT, respectively. We present and
analyze results for each set separately, offering a com-
prehensive evaluation of ChatGPT’s capabilities.

4 Experimental Results

In this section, we present results for how ChatGPT
performed across the full range of our coding experi-
ments.

0 20 40 60 80 100
Bins of Acceptane Rate

0

50

100

150

200

N
um

be
r o

f p
ro

bl
em

s

All leetcode
Our Dataset

Figure 3: A histogram showing how the acceptance rates
of solutions to LeetCode questions used in our experiments
compare to the acceptance rates across all problems hosted
on the entire LeetCode platform. These acceptance rates are
tracked by LeetCode when humans solve problems on the
platform

Train Set Test Set
Dataset type

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge
 (

%
) 

of
 C

or
re

ct
ne

ss

52
.8

8

12
.6

0

65
.2

5

26
.3

8

51
.1

7

44
.7

5

GPT-3
GPT-4
Human

Figure 4: Correctness of GPT-3, GPT-4 and Humans for
Train and Test sets.

7.
13

%

30
.2

2%

15
.2

4%

GPT-3 GPT-4

(a) Train Set

2.
08

%

12
.9

2%

6.
17

%

GPT-3 GPT-4

(b) Test Set
Figure 5: Venn diagram showing exclusive and inclusive
correctness of GPT-3 and GPT-4 for all the problems in the
train and test datasets.

4.1 How often does ChatGPT produce a
correct coding solution?

4.1.1 Complete coding challenges

For each of GPT-3, GPT-4 and human coders, Figure
4 shows the number of correct coding solutions ex-
pressed as a percentage of the total number of coding



Table 2: Percentage of LeetCode questions of different topics compared to the total no. and percentage of question no. of
sub-topics compared to the topics they belong to in the dataset.

Topic No. of Questions (%) Sub-topic No. of Questions (%)
Complete coding

challenges
Incomplete coding

challenges
Complete coding

challenges
Incomplete coding

challenges
Algorithm 422 (58.40%) 407 (60.48%) Dynamic 132 (31.30%) 124 (30.47%)

Greedy 136 (32.23%) 129 (31.70%)
Depth first search 99 (23.46%) 99 (24.32%)
Divide and conquer 33 (7.82%) 33 (8.11%)
Topological sort 22 (5.21%) 22 (5.41 %)

Data Structure 248 (34.30%) 228 (33.88%) Priority queue 82 (33.06%) 82 (35.96 %)
Array 49 (19.76%) 45 (19.74 %)
Hash table 43 (16.94%) 42 (18.42 %)
Stack 38 (15.73%) 33 (14.47 %)
Binary Search Tree 36 (14.52%) 26 (11.40 %)

Strings 53 (7.30%) 38 (5.65%)
Total Questions 723 673

Table 3: Dataset overview based on difficulty levels of Leetcode questions.

Difficulty Level Overall question share(%) Topics Number of questions
Complete coding

challenges
Incomplete coding

challenges
Complete coding

challenges
Incomplete coding

challenges
Easy 96 (13.30%) 83 (12.31%) Algorithm 40 38

Data Structure 42 39
Strings 14 6

Medium 374 (51.7%) 345 (51.18%) Algorithm 230 217
Data Structure 126 116
Strings 18 12

Hard 253 (35.00%) 246 (36.49%) Algorithm 152 152
Data Structure 80 74
Strings 21 20

solutions generated. The correct solutions are tallied
for all problems solved in our experiments without
separating them into topics and sub-topics. The figure
shows results for both train and test sets, and is specif-
ically for only the complete coding challenges. For
coding challenges drawn from the train set, the figure
shows that GPT-4 clearly stands out, with GPT-3 per-
forming about as well as humans. On the test set, hu-
mans outperform both models, while GPT-4 performs
about twice as well as GPT-3.

Comparing each model’s performance between
the train and test sets, the figure shows that GPT-3’s
effectiveness on the test set is almost 25% of that
on the train set while GPT-4’s effectiveness on the
test set is about 50% of that on the train set. GPT-4
hence does a significantly better job at generalization
than GPT-3. Overall, the takeaway from the figure
is that GPT-4 is a significant improvement over GPT-
3, and that for use-cases requiring coding solutions
to algorithms and data structures problems different
from those seen during training, humans continue to
do much better than either ChatGPT model.

In light of GPT-4’s architectural improvements
over GPT-3 and the above discussed superior per-
formance relative to GPT-3, it is instructive to pose
the following question: did GPT-4 achieve its perfor-
mance numbers by successfully solving every prob-

lem that GPT-3 solved, in addition to other problems
that GPT-3 could not solve? We address this ques-
tion in the venn diagrams shown in Figure 5. For
both the train and test datasets, the figures show that
there are some questions for which GPT-3 generates
a correct solution yet GPT-4 generates an incorrect
solution (i.e., 7.13% of the questions in the train set
and 2.08% on of the questions on the test set). Hence
while GPT-4 is clearly more effective than GPT-3, this
does not mean that it beats GPT-3 on every single
task. The trait points to a reality of learning-based
systems where an enhanced model can generally de-
liver better performance overall but yet perform worse
on certain problems. Note that we do not include hu-
man performance on Figure 5 because this informa-
tion is not available to us at this granularity. In partic-
ular, LeetCode only publishes aggregate statistics for
the percentage of correct solutions submitted by its
user base for a given problem. Our venn diagrams on
the other hand depict each of GPT-3 and GPT-4 as an
individual user who either obtains a PASS or a FAIL
for each question.

Table 4 and Table 5 dig deeper into the perfor-
mance analysis by breaking it down to topic and sub-
topic level. Table 4 shows that the patterns on the rel-
ative performance between models that we reported in
Figure 4 persist even at topic-level since GPT-4 per-



forms best on the train set while humans perform best
on the test set for each topic. This general pattern still
holds at the sub-topic level (see Table 5). Table 5 also
suggests that some topics are markedly better done
than others irrespective of the model in question. For
example, on the training set, dynamic programming
has our 3 entities (i.e., the two models and humans)
at between 32% and 44% accuracy, while depth-first
search has the 3 entities at between 57% and 87% ac-
curacy. A similar phenomena can be seen across top-
ics on the test set. As we discuss in the following
paragraph, this trend is more a result of the difficulty
of the questions that were solved within a topic as op-
posed to the identity of the topic itself.

Table 4: Correctness of GPT-3, GPT-4, and Humans for
each problem topics in terms of Train and Test datasets.

Topic Correct Solutions %
Train Set Test Set

GPT-3
Algorithms 51.90 10.62
Data Structures 54.91 10.67
Strings 50.00 36.84

GPT-4
Algorithms 66.79 23.12
Data Structures 63.00 29.34
Strings 64.70 42.10

Human
Algorithms 49.39 44.02
Data Structures 54.76 44.80
Strings 46.57 50.64

Table 6 shows how performance varied across dif-
ficulty levels of the coding challenges. Observe that,
irrespective of the topic, the percentage of correct so-
lutions drops as one navigates from the easy questions
at the top of the table towards the hard questions lower
down the table. The table confirms that the difficulty
of the questions, and not the topic is the stronger de-
terminant of what proportion of coding solutions are
correct for both train and tests sets. Another interest-
ing trait seen here is that humans hold better as the
questions get harder. For example, on the test set,
GPT-4 drops from a peak accuracy of 75% on the
easy questions, to as low as 0% on the hard ques-
tions. Humans on the other see a more modest drop
from 69.81% to 33.62% as questions on the test set
get harder. On the training set, the best of the two
models does significantly better than humans on the
easy questions, yet the humans close the gap on the
harder problems down the table.

4.1.2 Incomplete coding challenges

Figure 6 shows the performance registered with the
incomplete coding challenges (recall Section 3.2.2).
For context, we have included the performance num-
bers (blue and green bars) from the earlier presented

Table 5: Performance of GPT-3, GPT-4 and humans for
each sub-topic across the Train and Test datasets

Sub-topic Subjects Correct Solutions %
Train Set Test Set

Dynamic Programming
GPT-3 32.43 6.90
GPT-4 44.59 15.52
Human 43.73 39.41

Greedy Algorithms
GPT-3 42.50 14.29
GPT-4 66.25 23.21
Human 46.55 42.66

Depth first search
GPT-3 77.94 16.13
GPT-4 86.76 38.71
Human 56.89 53.50

Divide and conquer
GPT-3 71.43 0
GPT-4 78.57 40.0
Human 54.30 43.24

Topological sort
GPT-3 41.67 0
GPT-4 66.67 10.0
Human 49.35 49.40

Priority queue
GPT-3 52.08 5.88
GPT-4 70.83 35.29
Human 51.46 46.89

Arrays
GPT-3 41.03 20.0
GPT-4 43.59 20.0
Human 54.11 38.37

Hash tables
GPT-3 59.38 9.09
GPT-4 56.25 30.0
Human 50.23 49.16

Stacks
GPT-3 57.14 20.0
GPT-4 71.43 27.27
Human 56.72 44.96

Binary Search Tree
GPT-3 73.08 10.0
GPT-4 76.92 20.0
Human 65.30 39.67

results on the complete coding challenges. On the
training set (Figure 6a), the figure shows that irre-
spective of whether the coding questions are com-
plete or not, GPT-3 attains about the same perfor-
mance. The same trend is seen with GPT-4. Also
noteworthy is that humans, despite having the ben-
efit of complete information on all the coding chal-
lenges, performed worse than both GPT-3 and GPT-4
models which operated with incomplete information,
There are two possible explanations for the patterns
seen here. First, it could be that the GPT-3 and GPT-4
models memorized these problems and their answers
from the training dataset, enabling them to perform
the same way even when significant information was
cut our from the questions. It could however also be
that the two GPT models have built a good amount of
domain knowledge from the vast expanse of training
data, enabling them to fill in the gaps where coding
questions are missing the kinds of information speci-
fied in Section 3.2.2.

Figure 6b provides some clarity on the likelihood
of each of the above two possible explanations. The
figure shows how the models performed when the in-
complete coding challenges were drawn from the test



Table 6: Performance of GPT-3, GPT-4 and humans across problems having varying difficulty levels

Difficulty Level Topics
Correct Solutions %

Train Set Test Set
GPT-3 GPT-4 Humans GPT-3 GPT-4 Humans

Easy
Algorithms 96.42 96.42 58.88 33.34 58.34 55.95
Data Structures 72.72 81.81 68 33.34 66.67 55.64
Strings 100 83.33 52.4 62.5 75 69.81

Medium
Algorithms 58.15 75.17 51.17 14.6 30.34 44.93
Data Structures 64.04 64.04 54.5 8.1 35.13 45.7
Strings 54.54 72.72 46.89 28.57 28.57 38.47

Hard
Algorithms 29.03 45.16 43.83 0 5.08 40.22
Data Structures 27.45 49.01 46.64 6.45 10.34 40.31
Strings 29.41 52.94 44.31 0 0 33.62

GPT-3 GPT-4 Human
Subjects

0

20

40

60

80

100

Co
rr

ec
t 

So
lu

ti
on

s 
(%

)

52
.8

8 65
.2

5

52
.8

8 65
.2

5

54
.8

0 64
.1

8

52
.8

8 65
.2

5

54
.8

0 64
.1

8

51
.1

7

Complete Questions
Incomplete Questions
Human

(a) Train Dataset

GPT-3 GPT-4 Human
Subjects

0

10

20

30

40

50

60

Co
rr

ec
t 

So
lu

ti
on

s 
(%

)

12
.6

0

26
.3

8

12
.6

0

26
.3

8

10
.2

9

18
.6

3

12
.6

0

26
.3

8

10
.2

9

18
.6

3

44
.7

5

Complete Questions
Incomplete Questions
Human

(b) Test Dataset
Figure 6: Performance of GPT models on the incomplete
coding challenges

set. As has been seen with all test sets up to this point,
the percentage of correct solutions for both models
is markedly reduced relative to when the training set
was used. That recurring observation aside, it is note-
worthy that GPT-3 and GPT-4 still get between 10%
and 19% of the incomplete coding questions correct.
This being a test set, the performance seen here can-
not be attributed to memorization given that the test
questions/answers were not included in the data used

to train the model. A more plausible explanation is
that the the 10-19% correct solutions were due to the
models filling in the gaps for the missing constraints,
examples and diagrammatic illustrations. The sum-
total of behavior registered in Figures 6a and 6b could
hence be attributed to a bit of both memorization and
robustness of the two GPT models.

Train Set Test Set
Dataset type

0

20

40

60

80

100
%

 o
f w

ro
ng

 s
ol

ut
io

ns
 

 w
it

ho
ut

 r
un

-t
im

e 
er

ro
rs

76
.4

7 87
.8

4

60
.1

2

81
.2

8

GPT-3
GPT-4

Figure 7: Percentage of problems produced errors, which
indicates the percentage of errors out of all incorrect an-
swers (errors and wrong answers).

4.2 Examining the cases when ChatGPT
failed to produce a correct solution

Up to this point, we have focused on the percentage of
correct coding solutions obtained across a wide range
of scenarios. It is however insightful to also dig into
the cases when LeetCode found the solutions to be in-
correct. In particular, we are interested in those cases
where ChatGPT produced incorrect solutions whose
code executed successfully (as opposed to (incorrect)
solutions which could not even run). It is interest-
ing to get some measure of whether these wrong so-
lutions whose code executed successfully were only
marginally wrong or so wrong.

Figure 7 provides information on how frequently
these cases occurred. The y-axis shows the number



of cases when ChatGPT produced an incorrect solu-
tion whose code executed successfully (i.e., code that
did not produce a run-time error) expressed as a per-
centage of all the cases when it failed to produce a
correct solution (i.e., the total of the cases when it
produced an incorrect solution whose code executed
successfully and those when the code returned a run-
time error). On the training set, the figure shows that
ChatGPT produced between 60% and 77% of such
cases. On the test set, these cases happen 80% of the
time or more. Overall, the graph shows that in the
majority of cases when ChatGPT failed to produce a
correct solution, the code still executed successfully.
The figure also shows that on both the train and test
set, GPT-4 was less likely to generate wrong solutions
that had no run-time errors (i.e., GPT-4’s wrong solu-
tions were more likely to generate errors than GPT-
3’s wrong solutions). This trait is somewhat surpris-
ing since all our results show GPT-4 to clearly be the
superior model when seen from the perspective of the
proportion of correct solutions it generates. An exam-
ination of the nature of errors in the cases where Chat-
GPT produced run-time errors will be done in Section
4.3.

Here, we dig deeper into the cases where Chat-
GPT’s code executed successfully despite the solu-
tions being wrong. Table 7 sheds light on the fol-
lowing question: how wrong were ChatGPT’s wrong
solutions? The relevance of this question lies in the
fact that, if the majority of wrong solutions turn out
to only be marginally wrong, then users in practice
might perhaps simply have to make minor tweaks to
these wrong solutions in order to solve their coding
challenges. To answer the question, we leverage the
test cases which have been meticulously put together
in LeetCode for each coding challenge. When a so-
lution is flagged as wrong, LeetCode still returns the
number of test cases passed. We use the fraction of
test cases passed as some measure of how wrong a
given solution is — i.e., we classify a solution with a
smaller proportion of test cases passed as more wrong
than one which has a larger proportion of test cases
passed.

Table 7 shows the percentage of test cases that
were passed by the wrong solutions generated by
ChatGPT for various experiment configurations. The
percentages of test cases (shown in the first column)
have been organized in bins of width 10 from 0-10 to
90-100. To illustrate how to read this table, we use the
first value (42.57) in the second column (that is, under
Algorithms - Train set - GPT-3). This value means
that 42.57% of the wrong answers generated by the
GPT-3 model passed between 0 to 10% of the test
cases when coding challenges for algorithms prob-

lems were drawn from the train set. Looking at the
first two rows of the entire table therefore, one can
conclude that the vast majority of the wrong solutions
generated by ChatGPT passed only 0-20% of the test
cases. At the other extreme (last row), one can see that
a very small proportion of the wrong answers passed
90% to just under 100% of the test cases. Overall,
the table reveals that for the kinds of coding problems
solved in this paper, whenever ChatGPT generated a
wrong solution, the solution was, based on test cases
passed, very likely to be far detached from the correct
solution. The table shows that for the most part this
pattern still holds regardless of the model (GPT-3 vs
GPT-4), problem topic (algorithms vs data structures
vs strings), and the source of the problems (i.e., train
set vs test set).

4.3 Evaluation of ChatGPT’s code
quality

Er
ro

rs

W
an

in
gs

Co
nv

en
tio

ns

Re
fa

ct
or

s

Problem Type

103

104
Pr

ob
le

m
 c

ou
nt

15
1

50
9

74
30

90
2

16
2

32
7

70
97

10
80

GPT-3
GPT-4

Figure 8: Code quality issues seen in ChatGPT code

In this section, we present our findings on the
code quality evaluations. We undertook these using
Pylint (Pylint, 2023), and performed evaluations on
all coding solutions generated by ChatGPT regard-
less of whether they were wrong or correct. We also
ran these evaluations for cases when ChatGPT’s code
generated run-time errors. In general, the notion of
code quality remains relevant irrespective of whether
a piece of code ultimately solves the problem at hand
or not. The section particularly offers insights into the
nature of errors, warnings, refactors, and convention
violations seen in ChatGPT’s code. Figure 8 shows
the total count seen in our experiments for each of
them.

We obtained a total of just over 300 errors,
much lower in number than the other issues. On
the other extreme, convention-related issues occurred



Table 7: Percentage of test cases passed when ChatGPT generated wrong solutions

% of
test cases

passed

% of wrong solutions that passed the given % of test cases
Algorithms Data structures Strings

Train Set Test Set Train Set Test Set Train Set Test Set
GPT-3 GPT-4 GPT-3 GPT-4 GPT-3 GPT-4 GPT-3 GPT-4 GPT-3 GPT-4 GPT-3 GPT-4

(0, 10] 42.57 45.45 54.40 49.51 35.19 37.84 43.33 37.78 50.00 66.67 44.44 25.00
(10, 20] 16.83 18.18 16.00 15.53 18.52 18.92 16.67 22.22 0.00 16.67 0.00 25.00
(20, 30] 8.91 7.27 7.20 6.80 1.85 16.22 5.00 2.22 0.00 0.00 0.00 0.00
(30, 40] 2.97 1.82 3.20 3.88 1.85 5.41 8.33 8.89 0.00 0.00 22.22 0.00
(40, 50] 5.94 3.64 1.60 6.80 3.70 8.11 5.00 8.89 8.33 0.00 11.11 0.00
(50, 60] 0.99 1.82 4.00 2.91 7.41 0.00 1.67 6.67 0.00 0.00 11.11 0.00
(60, 70] 3.96 3.64 4.80 2.91 3.70 5.41 3.33 2.22 0.00 0.00 0.00 50.00
(70, 80] 6.93 3.64 4.00 6.80 11.11 5.41 5.00 6.67 8.33 0.00 11.11 0.00
(80, 90] 3.96 1.82 3.20 1.94 9.26 0.00 5.00 2.22 16.67 0.00 0.00 0.00

(90, 100) 6.93 12.73 1.60 2.91 7.41 2.70 6.67 2.22 16.67 16.67 0.00 0.00

over 15,000 times. In the following paragraphs, we
break down each of these into their sub-types by per-
centage. The absolute numbers shown in Figure 8
should help provide context to the percentage num-
bers reported in the rest of the narrative.

E0
60

1

E0
60

2

E1
11

1

E0
00

1

E1
10

1

E0
20

2

E0
21

3

E0
10

2

E1
13

6

Error ID

100

101

102

Pe
rc

en
ta

ge
 o

f e
rr

or
pr

ob
le

m
s 

in
 t

ot
al

1.
99

83
.4

4

6.
62

4.
64

3.
31

1.
23

85
.1

9

0.
62

2.
47 3.

70

0.
62

1.
23

1.
23

3.
70

GPT-3
GPT-4

Figure 9: Percentage share of each of the error types seen
in ChatGPT code

Figure 9 shows the percentage share of each of the
error types seen in our experiments. The figure shows
that the error, E0602, occurred over 80% of the time
for both GPT-3 and GPT-4; in fact, it occurred an en-
tire order of magnitude more frequently than the other
errors. It is for this reason that we used a logarithmic
scale on the y-axis. According to the Pylint documen-
tation (Pylint, 2023), this error message is defined as
undefined-variable, and is generated when a variable
that was not defined is accessed. To the ChatGPT end-
user, this finding suggests that whenever ChatGPT-
generated code returns run-time errors, a careful re-
view and fixing of variable definitions might be all
that one needs to solve many of the problems. Each
of the other error types occur so infrequently and we
dont discuss them here.

Figure 10 shows all the warnings which we ob-
served in our experiment (13 in total). Again, we see
a similar phenomena: one warning type occurs an en-
tire order of magnitude more frequently than each of
the others. In this case that warning type is, W0621,
which Pylint defines as, redefined-outer-name. The
warning is raised when one redefines a name from an
outer scope. For example, if a variable was defined
in a scope external to some function, this warning is
raised when the same variable is defined inside the
function. Looking at this dominant warning in light
of the dominant error described in the previous para-
graph, one can conclude that defining variables in a
consistent manner is in general a standout problem
exhibited by ChatGPT code.

Finally, we found a total of 20 different refac-
tor and 18 convention messages in our Pylint reports.
These messages and their percentage of occurrence
for both GPT-3 and GPT-4 can be seen in Table 8.
Again we had a single refactor message and a sin-
gle convention message occurring at a disproportion-
ately high frequency relative to the others. The refac-
tor message in question is the one with the message
id R0903. According to the Pylint documentation,
the message id refers to the message: too-few-public-
methods. This is indicated when a class has a small
number of public methods. On the other hand the
dominant convention message is one with the mes-
sage id C0103. It occurs when the given name does
not adhere to the naming conventions specific to its
type, whether it be a constant, variable, class, or oth-
erwise. To the ChatGPT end-user who is leveraging it
to generate source code, the overarching observation
from this section is that one can expect just a couple
of quality issues to occur the vast majority of times.



W
06

21

W
06

11

W
06

22

W
06

12

W
23

01

W
06

13

W
02

01

W
47

01

W
01

23

W
01

27

W
01

02

W
01

20

W
11

14

Warning ID

100

101

102

Pe
rc

en
ta

ge
 o

f W
ar

ni
ng

s
pr

ob
le

m
s 

in
 t

ot
al

75
.4

4

1.
77 2.

16

8.
84

4.
13

6.
48

0.
59

0.
39

0.
20

54
.1

3

6.
73

3.
36

11
.3

1

0.
31

5.
50

17
.4

3

0.
61

0.
31

0.
31

GPT-3
GPT-4

Figure 10: Percentage share of each of the warning types seen in ChatGPT code

Table 8: Percentage share of each of the refactor and convention issues seen in ChatGPT code
Percentage of lint-problems occurring in terms of all lint-problems

Refactor Convention
Message ID GPT-3 (%) GPT-4 (%) Message ID GPT-3(%) GPT-4(%)

R0903 87.47 88.89 C0103 46.97 47.53
R1705 4.1 4.63 C0116 14.41 15.63
R0914 2.11 1.02 C0115 12.36 14.79
R1714 0.67 0.74 C0114 9.6 10.13
R0913 1.44 0.65 C0303 14.24 7.69
R1710 0.22 0.65 C0301 1.41 2.49
R1702 0.11 0.65 C0200 0.74 0.63
R1721 0.55 0.56 C0321 0 0.45
R1728 0.33 0.56 C0305 0.15 0.39
R0912 0.55 0.37 C0121 0 0.08
R1735 0.11 0.37 C0415 0 0.06
R1704 0.11 0.28 C0325 0 0.06
R0911 0 0.19 C0206 0.07 0.03
R1716 0.89 0.09 C1803 0 0.01
R0916 0.33 0.09 C0413 0 0.01
R1724 0.22 0.09 C0304 0.03 0
R1723 0.11 0.09 C0209 0.01 0
R1719 0.11 0.09 C0201 0.01 0
R1731 0.44 0
R0205 0.11 0

5 Conclusion

In this paper, we have conducted what is to date the
most comprehensive evaluation of ChatGPT’s pro-
gramming proficiency. Our emphasis has been on al-
gorithms and data structures, two topics at the heart
of Computer Science. Using a total of 2,792 cod-
ing prompts, we have presented results from several
performance perspectives. First, we have evaluated
the proportion of correct solutions provided by Chat-
GPT across a wide range of sub-topics within the core
topics. We have that humans passed more questions
than ChatGPT on problems not seen in the training
set, and fewer questions than ChatGPT on problems
seen in the training set. We also found that despite
the newer ChatGPT model (GPT-4) performing better

than the older one (GPT-3), this is not necessarily the
case on every problem. In particular, GPT-3 was able
to outperform GPT-4 on several problems. This trait
underlines one challenge that applies to learning algo-
rithms in general, where enhancements to a learning
model might make the model perform worse on cer-
tain problems, despite the model doing better overall.
This observation suggests that as LLMs continue to
advance, older versions of them might continue to be
useful for a long while.

Whenever ChatGPT provided a wrong solution,
we proceeded and dug deeper to asses how many test
cases the solution passed. This analysis enabled us
to get some rough measure of how wrong each solu-
tion is, a kind of insight that end-users having to fix



wrong ChatGPT code should find so useful. Our find-
ings here indicate that the vast majority of ChatGPT’s
wrong solutions pass only a very small proportion of
test cases.

Regardless of whether ChatGPT successfully
solved a problem or not, we assessed the quality of
code it generated. For this evaluation we looked into
types of errors, warnings, conventions and refactor
issues. We found that only a couple of error types,
warnings, conventions and refactor issues show up
the vast majority of times. For example, the single
most frequent error type showed up an order of mag-
nitude more frequently than each of the other error
types. This same pattern, seen also with the other
code quality attributes, suggests that end-users fixing
ChatGPT code might have to focus on seeking out a
small selection of issue types. In the training memo-
rization experiment, we found evidence that suggests
that some of the solutions generated by ChatGPT ben-
efited from a fair amount of memorization of the train-
ing set. The same experiment however also provided
results that suggested that part of what seemed like
memorization might in fact be reflective of ChatGPT
being so robust that it is able to fill in missing gaps in
incomplete questions, thereby solving them success-
fully. This is an interesting question that surely call
for more research.

Overall, while our results point out some issues
where the latest iterations of LLMs (ChatGPT in par-
ticular) might still need to improve, the paper show-
cases the impressive performance of these models.

REFERENCES

Afifi, M., Kalra, D., and Ghazal, T. (2020). Data mining and
exploration: A comparison study among data mining
techniques on iris data set. Talent Development and
Excellence, 12:3854 – 3861.

Bang, Y., Cahyawijaya, S., Lee, N., Dai, W., Su, D., Wilie,
B., Lovenia, H., Ji, Z., Yu, T., Chung, W., Do, Q. V.,
Xu, Y., and Fung, P. (2023). A multitask, multilin-
gual, multimodal evaluation of chatgpt on reasoning,
hallucination, and interactivity.

Biswas, S. (2023). Role of chatgpt in computer
programming.: Chatgpt in computer program-
ming. Mesopotamian Journal of Computer Science,
2023:8–16.

bit, I. (2023). Computer science interview questions.
https://www.interviewbit.com/computer-science-
interview-questions/. Accessed: 2023-07-9.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y.,
Lundberg, S., Nori, H., Palangi, H., Ribeiro, M. T.,
and Zhang, Y. (2023). Sparks of artificial general in-
telligence: Early experiments with gpt-4.

Code, L. (2023). Leetcode problems.
https://leetcode.com/problemset/all/. Accessed:
2023-06-14.

Datta, S. (2021). Titanic dataset kaggle notebook. URL:
https://github.com/saptarshidatta96/TitanicDatasetKaggle.

Frieder, S., Pinchetti, L., Griffiths, R.-R., Salvatori, T.,
Lukasiewicz, T., Petersen, P. C., Chevalier, A., and
Berner, J. (2023). Mathematical capabilities of chat-
gpt.

Gilson, A., Safranek, C. W., Socrates, V., Chi, L., Taylor,
R. A., and Chartash, D. (2022). How does chatgpt
perform on the united states medical licensing exami-
nation? the implications of large language models for
medical education and knowledge assessment. JMIR
Med Educ, 9.

Khodiyar, P. (2021). Data structures and algorithms in real
life. https://zriyansh.medium.com/data-structures-
and-algorithms-in-real-life-6b2b813d516e. Accessed:
2023-07-9.

Noever, D. and McKee, F. (2023). Numeracy from literacy:
Data science as an emergent skill from large language
models.

Pardos, Z. A. and Bhandari, S. (2023). Learning gain dif-
ferences between chatgpt and human tutor generated
algebra hints.

Pylint (2023). Pylint documentation.
https://pylint.readthedocs.io/en/stable/. Accessed:
2023-06-14.

Romani, E. (2020). How to generate pseudo-
random datasets in python: start from scratch
with numpy faker. Medium. URL:
https://towardsdatascience.com/how-to-generate-
pseudo-randomdatasets-in-python-start-from-scratch-
with-numpy-faker-c5661e3bc58b.

Sanyal, S., Biswas, S. K., Das, D., Chakraborty, M., and
Purkayastha, B. (2022). Boston house price prediction
using regression models. 2022 2nd International Con-
ference on Intelligent Technologies (CONIT), pages
1–6.

Tian, H., Lu, W., Li, T. O., Tang, X., Cheung, S.-C., Klein,
J., and Bissyandé, T. F. (2023). Is chatgpt the ultimate
programming assistant – how far is it?

Yunhe Feng, Sreecharan Vanam, M. C. W. Z. M. Q. H. C.
(2023). Investigating code generation performance of
chatgpt with crowdsourcing social data.

Zhuo, T. Y., Huang, Y., Chen, C., and Xing, Z. (2023). Red
teaming chatgpt via jailbreaking: Bias, robustness, re-
liability and toxicity.


