
Weaponizing IoT Sensors: When Table Choice
Poses a Security Vulnerability

Gustavo Casqueiro*†
Military Institute of Engineering

Rio de Janeiro, RJ, Brasil
gustavo.casqueiro@ime.eb.br

Sayed Erfan Arefin†
Texas Tech University

Lubbock, Texas, USA
saarefin@ttu.edu

Tasnia Ashrafi Heya
Texas Tech University

Lubbock, Texas, USA
tasnia.heya@ttu.edu

Abdul Serwadda
Texas Tech University

Lubbock, Texas, USA
abdul.serwadda@ttu.edu

Hassan Wasswa
Texas Tech University

Lubbock, Texas, USA
hwasswa@ttu.edu

Abstract—The security threat posed by keyloggers on laptop
and desktop computers is traditionally understood from the
perspective of malware that directly reads keystrokes on the
victim’s machine. While recent research on smart phone plat-
forms has shown that motion/vibration sensors inbuilt in these
phones also pose a keylogging threat, this line of attack has
never been investigated in desktop and laptop settings given
that no such sensors exist in these settings. In this paper, we
show that the vibration dynamics of commonly used computer
table materials transmit keyboard vibrations during typing with
such fine granularity that keyboard typing locations (and hence
keystrokes) could be learned from the vibrations. In practice
such an attack would be executed by methodically rigging the
underside of a computer table or keyboard itself with a series
of motion sensors, and then mining the data generated by these
sensors during typing. Taking the case of typical computer table
materials such as glass, plastic, metal and wood, we study this
line of attack and highlight scenarios where it poses a potent
threat. Thanks to fast growing IoT platforms making available
easy-to-use, fully featured, cheap sensors, we argue that this
line of attack is accessible to even casual ”computer hackers”
having no knowledge of low-level hardware programming. The
paper brings to light a previously unexplored privacy threat that
security practitioners and end-users need to pay attention to as
IoT goes mainstream.

Index Terms—internet of things, sensors, side-channel attack,
machine learning, keylogging, keyboard inference attack

I. INTRODUCTION

Imagine the following scenario. Eve wants to spy on the
messages that her boss Bob types on his desktop keyboard.
Eve however does not have login credentials to Bob’s system,
and hence cannot install a key logger on it. Eve opts to
buy several motion/vibration IoT sensors and methodically
“plants” them under Bob’s desktop keyboard or under the
table on which the keyboard sits. She will then analyze the
microscopic vibrations captured by these sensors while Bob
types and hopefully leverage them to infer the text typed (e.g.,
emails, PINs, passwords,etc.).

†These co-authors contributed equally.
*This research was conducted while he was visiting Texas Tech University

in the Fall of 2021.

While keystroke side-channels have seen a significant
amount of recent research, the line of attack articulated above
has surprisingly never been studied. A possible reason behind
this is that threats from motion-sensors are typically imagined
in the context of smart phones, which come inbuilt with these
sensors. With the proliferation of IoT technologies and devices
in recent years however, fully-featured, plug-and-play, sensors
of all kinds are available on the open market, and could
be deployed in all kinds of settings beyond the now well-
understood smart phone scenario.

For example, an entity seeking to execute the attack de-
scribed above can easily buy a series of vibration sensors
(e.g., see [1]) that could easily be embedded in any device
earmarked for the attack. Such sensors are custom built for
the average “Do-It-Yourself” (DIY) customer who has no
knowledge at all of hardware programming. At a price point of
less than $50 (see [1]), each of these sensors comes equipped
with an accelerometer, gyroscope, and, magnetometer, and
includes support for Bluetooth connectivity with up to 50
metres range. All that the attacker needs to do is follow
the manual and plug the various cables in the right places
before launching the associated mobile or desktop apps that
come with the sensors for data collection. Before IoT be-
came mainstream and launched these kinds of sensors onto
the open civilian market, an adversary seeking to execute
this attack would have needed significant low-level hardware
programming knowledge. This should in turn have limited
the likelihood that one could ever be subjected to this kind
of attack. With the IoT revolution making these kinds of
attacks much more likely, it is instructive that these IoT-driven
attacks be studied so that the broader research community
can understand their dynamics and possibly explore defense
mechanisms. The previous statement underlines the primary
goal behind of this paper.

Taking the case of PINs typed on the numeric pad of
a standard Logitech keyboard, we investigate the question
of whether a series of vibration sensors hidden under the
keyboard, or under the table holding the keyboard could be

used to infer text typed on the keyboard. We use a commodity
vibration sensor bought off of Amazon for the attack (see
Figure 2), and take advantage of the small size of this sensor
(i.e., 1.5cm) to rig as many as 4 sensors under the table. We
study this attack scenario for various types of table surfaces
and highlight cases for which the attack poses a serious threat.

The contributions of our paper are summarized below.
1) Design and evaluation of an attack in which under-

side of keyboard is rigged with motion sensors:. We
present an attack in which an adversary attaches a series
of motion sensors under a computer keyboard with the
aim to infer text typed on the keyboard. We execute
this attack on PINs typed on the keyboard and show it
to be highly effective, attaining a classification accuracy
of up to 90% at the inference of individual keys. We
perform a sensitivity analysis on the attack, highlighting
how variables such as the numbers of sensors and distance
of keys from the sensors impact attack performance.

2) Investigation of attack behavior for sensors hidden
under tables made out of four commonly used materi-
als: In cases where the attacker might need extra stealth
or where the specific design of a keyboard might not
enable the insertion of sensors under it, the attacker could
opt to put the sensors under the table, right below the
keyboard. We also design and evaluate this line of attack,
studying four commonly used table-top surfaces (namely,
wood, glass, metal and plastic). On one extreme we find
the plastic table to be highly vulnerable to the attack,
and on the other, the wooden table to completely thwart
the attack. The other two surfaces depict a behavior in
between these two extremes.

3) Investigation of impact of table rotation and trans-
lation on attack behavior: For the attack variant in
which sensors are hidden under the table, it is possible
that the victim might move the keyboard during their
routine activities, and inadvertently thwart the attack
after mis-aligning the keyboard with the sensors. We
run experiments where the keyboard undergoes small
translations and rotations relative to its initial position,
and show that these can be very easily detected from
sensor data features. This result implies that an attacker
who detects such movements can abort the attack until
he/she gets the next opportunity to access the victim’s
space and re-align the sensors.

Road-map: The rest of the paper is organized as follows.
We present our threat model and attack design requirements in
Section II. We then present the attack design and evaluation in
Sections III and IV. Afterwards, we discuss related research
in Section V and our conclusions in Section VI.

II. THREAT MODEL

Our attack would typically be executed by an insider at-
tacker who has frequent access to the room containing the
victim’s computer. People who might have such access to
the victim’s space include work colleagues, office cleaners,
roommates, spouses, employers, etc. The attacker seeks to

spy on the victim’s keyboard inputs, but has no login (or
root) access to the victim’s computer/laptop and is thus unable
to install malware to undertake this operation. The attacker
then opts to rig the keyboard, table on which the keyboard is
placed, or laptop stand with motion and vibration sensors. The
attacker’s frequent access to the victim’s space ensures that
there are ample opportunities during the victim’s absence from
the room for installation, adjustment (if needed) and retrieval
of the sensors.

To generate data for training of the machine learning
models, the attacker has two options: (1) replicate the victim’s
setup by acquiring equipment (e.g., keyboards, tables, etc.)
similar to those of the victim so as to closely match the
vibration behavior of the victim’s system during typing, or, (2)
use the victim’s very system for typing the relevant training
data. The second option is possible because the generation of
training data does not require one to log onto the system. All
that is required of the attacker and (or) his/her accomplices is
to type content on the victim’s keyboard while sensors under
the keyboard/table capture the corresponding data. Again, the
attacker’s unfettered access to the victim’s space allows many
opportunities for this kind of data collection. For example, a
spouse, roommate or office cleaner would have many hours per
day to execute the training data collection using the victim’s
very system.

During the attack itself, the attacker could leverage various
contextual cues to increase the odds of attack success. For
example, by virtue of being an insider attacker, the attacker
might have a good idea of when the victim might type the
information being targeted for attack (e.g., a spouse might
have an idea of the times when the husband might be chatting
with his mistress(es)). This way, the attack could be focused
on carefully selected time-windows of sensor data. Even where
the attacker might not have such information, well-known
computer access patterns might help focus the attack. For
example, if the attacker’s target is to steal login credentials,
the attacker could exploit the fact that login details are the first
text that the victim enters on the keyboard in the morning, or
later in the day after breaks from work (e.g., lunch break). The
first few seconds of sensor data collected after long pauses
in sensor vibrations would thus be the focus of analysis in
such a case. Figure 1 shows a high-level view of the attack
process. While our attack implementation used Bluetooth to
send sensor data to the attacker’s workstation, one could,
depending on sensor features, opt to store sensor data on a
memory card within the sensor and retrieve it later, or even
use Wi-Fi to enable long-range data transmission.

III. ATTACK DESIGN AND IMPLEMENTATION

A. Hardware Used

The sensors used in our attack are Witmotion’s
WT901BLECL model [1]. Each sensor has a 3-axis
accelerometer and gyroscope and also measures angles and
magnetic fields. Using software that ships with the sensors, up
to 4 of these sensors can be connected to an Android device
or Windows PC for real-time data transfer via a Bluetooth

Fig. 1: Overview of attack process.

Fig. 2: One of the sensors used in our experiments

connection having 50 meters range (if no walls). The sensor
is shown in Figure 2. The 15mm height/thickness enables it
to stealthily attach under the raised end of a desktop keyboard
without any noticeable impact to how the keyboard sits on
a table surface (see Figure 3). One could remove the casing
and further reduce the sensor thickness and other dimensions
in order to push the sensors deeper under the keyboard. This
would hide the sensors better and also enable the usage of
more sensors under a given region if needed.

The keyboard used in our experiments is the Logitech
MK270 wireless keyboard [2] (also shown in Figure 3).
The sensors were attached under this keyboard using double-
sided tape. Note that the pictures in Figure 3 were taken with
such a camera angle to emphasize the sensors for illustration
purposes in this paper. Otherwise in many practical scenarios
the sensors would likely go unnoticed given that they occupy a
small portion of the keyboard width which is partly obfuscated
by one of the keyboard legs and the computer monitor. For
victims who work in settings where the backside of the
computer monitor faces a wall (e.g., our own research lab
and similar shared office spaces), or where the work-table
has books, gadgets and other clutter, the odds of the sensors
being seen would even get lower. Finally, we note that in the
experiment with sensors under tables not made out of glass
(details of all our experiments are in Section III-B), the idea
of the sensors being seen would even be out of question given
realistic assumptions.

B. Data Collection Experiments

Human subjects considerations: Data collection under
this research was approved by our university’s IRB. All
experimenters involved in data collection took the required
IRB training. All user data was not linked at all to the
participant identities. Our experiments imposed no privacy or

(a) Front view of keyboard

(b) Side view of keyboard

Fig. 3: Sensors hidden under the keyboard.

security risks to the participants since all they did was type
random passwords generated specifically for the study. All
experiments were done on our lab computers; there was no
software installation of any sort on participants’ devices.

Experiment details: Our experiments focused on numeric
inputs typed on the keyboard numeric pad. We specifically
collected data for two variants of the attack: (1) Attack with
sensors under the keyboard — In this attack we used two
sensors attached under the numeric pad of the keyboard as
shown in Figure 3, and, (2) Attack with sensors under the table
— In this attack, we used four sensors attached under a table
on which a keyboard sits. Four different table materials were
used, namely, wood, glass, metal and plastic (see Figure 4).
The sensors align with the numeric pad region of the keyboard
as illustrated in Figure 5.

In all our experiments, the sensors are placed under the
numeric pad because we simulate an attacker who targets this
pad to specifically steal numeric inputs (PINs, SSNs, monetary
figures, e.g., typed by bankers, etc.). This design is a case
study of the broader family of attacks which might leverage
the flexible sensor placement supported by this attack to target
different keyboard regions depending on what information one
wants to steal or application one wants to spy on.

Our data collection involved 23 participants across all
experiments. For the main number classification experiment,
participants provided training data by typing the digits 0-9,
30 times each on the number pad. For testing, participants
typed full PINs that comprised a mix of 4, 6 and 8 digit
PINs with 5 PINs of each length. In total, each participant
typed 15 PINs. The PINs were randomly generated from this

(a) Plastic table (b) Metallic table (c) Glass table (d) Wooden table

Fig. 4: A participant keyboarding on tables under which sensors have been attached. The four tables represent the four different
table materials used in our experiments. For locations of the sensors under the tables, see illustration in Figure 5.

Fig. 5: Sensor placement under the glass table. The keyboard
has been removed to reveal the sensors under the glass. The
blue line shows the area where the keyboard was placed so
as to align the sensors with the numeric pad. The sensors and
keyboard were positioned similarly for the other three table
surfaces.

website [3]. For the experiment to detect keyboard translation
or rotation from the initial position when sensors were under
the table, participants typed PINs just like in the main number
classification experiment.

Fig. 6: X component of gyroscope sensor data generated after
two consecutive key strokes on the keyboard.

C. Data Processing and Feature Extraction

Our sensors have an embedded Kalman filter, hence the
data collected from them was already quite clean requiring no
noise removal by us. Data generated by the sensors was taken
directly through a character segmentation step that extracted
sensor data segments that are delimited by pauses such as
those illustrated in Figure 6. The figure shows data from the
X axis of the gyroscope sensor when the key-pair 1 and 2 was
typed. In general, before a key is typed, sensor readings are

almost zero. When a key is typed, there is a brief spike in the
data which again dies down to about zero after key release.
From the three sensor axes (Y and Z not shown in the figure)
we computed the magnitude of the angular velocity which we
then used as a basis to cut out pauses. Having segmented the
characters, we extracted features from each of the 6 sensor
data streams (3 accelerometer axes and 3 gyroscope axes) for
every 2-second window of data. For this we used tsfresh [4]
library which generates an assortment of time and frequency
domain features from time-series data.

The features listed in Table I were calculated for each data
window and each axis. A detailed description of each of these
features is provided in the library documentation, hence we
do not repeat this here.

When tsfresh feature selection function [5] was used, the
classification results in our proof-of-concept experiments were
poorer. The same happened when PCA was used. We ulti-
mately just did a basic data cleaning on the features — i.e.,
we dropped features which had a constant value as well as
missing (NaN) or infinity (INF) values.

D. Machine Learning Models

For each our two overarching experiments (recall keystroke
inference, and keyboard movement detection in Section III-B),
we built machine learning models for different data input
scenarios. Table II summarizes these scenarios. The following
two sentences provide examples on how to interpret Table II.
In the keystroke inference attack, when the sensors were under
the keyboard, we had models which were built using data from
Sensor S1 alone, Sensor S2 alone, and the combination of S1
and S2.

For each sensor data stream we built two kinds of ma-
chine learning models: one based on an individual classifier,
and another based on a voting ensemble. All classifiers are
run with python’s scikit learn library [12]. The individual
classifiers were always XGBoost or LightGBM (depending
on which performed better on preliminary data). These two
were chosen because they generally outperformed all other
individual classifiers that we explored during the research.
The voting ensemble is scikit learn’s VotingClassifier [13]
which provides an interface for combining and tuning fusion
configurations of individual classifiers. Table III gives details

Features
Skewness Sum of reoccurring values Approximate Entropy Has Duplicate Last Location of Maximum
Sum values Sum of reoccurring data points Max Langevin Fixed Point Abs Energy Last Location of Minimum
Root mean square Ratio value number to time series length Variation Coefficient Fourier Entropy First location of minimum
Length Variance Larger than Standard Deviation Ratio Beyond R Sigma Standard Deviation First location of maximum
Kurtosis Time Reversal Asymmetry Statistic Mean Abs Change Number Peaks Absolute maximum
Maximum Mean Second Derivative Central Partial Auto correlation Auto Correlation Count Above Mean
Median Longest Strike Above Mean Number Crossing M Has Duplicate Max Variance
Mean Longest Strike Below Mean Mean N Absolute Max Has Duplicate Min Mean Change
Quantile Large Standard Deviation Agg Autocorrelation Number Cwt Peaks C3
Cid Ce Augmented Dickey Fuller ABS Sum of Changes Count Below Mean Benford Correlation
Minimum Query Similarity Count Lempel Ziv Complexity Range Count Binned Entropy

TABLE I: Features calculated for all the sensors using the tsfresh library [4].

Experiment Placement Sensors used

Keystroke Inference Attack

Under the
keyboard

S1
S2
S1+S2

Plastic
Surface

S1
S2
S3
S4
S1+S2+S3+S4

Glass
Surface

S1
S2
S3
S4
S1+S2+S3+S4

Metallic
Surface

S1
S2
S3
S4
S1+S2+S3+S4

Detecting
Keyboard
Movements

Rotation Plastic
Surface S1+S2+S3+S4

Translation Plastic
Surface S1+S2+S3+S4

TABLE II: The different data input scenarios used to build our
machine learning models.

of the constituent classifiers and associated parameters for the
voting ensemble classifier which was built for the case when
the sensors were placed under the table, and the input data
stream was S1+S2 (recall Table II). This particular ensemble
was selected after searching a wide range of configurations
from which we selected the best performing one. We leave
out the detailed parameter-sets for the other scenarios, but
provide a high-level summary of the number of instances of
each classifier used in the ensemble (see Table IV). The table
particularly shows the cases with input data from 4 sensors
(i.e., cases of table surfaces) and 2 sensors (case with sensors
under keyboard).

For the individual classifiers, Table V shows the classifier
details for the keystroke inference experiment. The details
shown apply to all cases (i.e., models from input streams S1,
S2, and S1+S2).

IV. ATTACK PERFORMANCE EVALUATION

In the following sub-sections we present results from all our
attack scenarios.

A. Keystroke Inference Attack

Figure 7 shows the keystroke inference accuracy for the
case with the sensor under the keyboard and the cases where
the sensors were under the 3 types of tables. In each case
we show results when data from one sensor is used to build
machine learning models that run the attack and where data
from all sensors is used. In all cases we see that for either
classifier, performance improves when multiple sensors are
used. This is unsurprising given that more sensors should cover
a wider area and in turn better represent the vibrations with
finer granularity.

The figure also reveals that the case with the sensors under
the keyboard performs best (Figure 7a), as it reaches an
accuracy of 90% in the best case. This accuracy is 9-times the
random guessing accuracy of 10% for the 10-class problem.
This good performance is likely because the direct contact
between the sensors and the keyboard enables unadulterated
transfer of vibrations to the sensors, which in turn allows the
classifiers to learn the underlying patterns more rigorously.

Of the three tables, the attack performs best with the plastic
table and worst with the metallic table. That said, even the
worst performing table scores a little better than 50% accuracy
when all sensors are used, a performance way higher than
random guessing.

The confusion matrices in Figures 8 and give us some
insights into where the classification errors came from. The
matrix in Figure 8 is for the scenario with the sensor under
the keyboard and the Voting Ensemble classifier. Observe that
in general, the numbers in the matrices tend towards zero as
one moves from the main (dark blue) diagonal towards the
bottom left corner. The same happens as one moves from
the main (dark blue) diagonal towards the top right corner.
This pattern indicates that misclassifications are for the most
part between neighbouring keys. For example, in figure 8,
the key, 1 is misclassified as 0 with probability 6.6%, and
as 2 with probability 3.8%. The key 1 does not see any other
significant misclassifications beyond these two. In the context
of the attack, this pattern means that any misclassifications
made by our attack could be fixed by searching a narrow set
of keys in the neighbourhood of the wrong prediction. This
same general pattern was seen with the other attack scenarios,
further pointing to the lethality of the attack.

Our final analysis of the keystroke inference attack is

Classifier Parameters Data Transformation
XGBoost [6] colsample bytree: 0.8, eta: 0.3, max depth: 10, max leaves: 0, n estimators: 100 Standard Scaler
XGBoost colsample bytree: 0.5, eta: 0.2, max depth: 6, max leaves: 0, n estimators: 400 Standard Scaler
XGBoost colsample bytree: 0.7, eta: 0.3, max bin: 63, max leaves: 7, n estimators: 600 Standard Scaler
Light GBM [7] colsample bytree: 0.69, max bin: 190, min child weight: 0, n estimators: 200 Max Abs Scaler
Light GBM colsample bytree: 0.199, max bin: 230, min child weight: 1, n estimators: 800 Robust Scaler
Random Forest [8] Scikit-learn defaults Standard Scaler
Extra Trees [9] criterion: gini, max features: 0.9, min samples leaf: 0.01, n estimators: 25 Min Max Scaler
KNeighbors [10] n neighbors:10 Sparse Normalizer
SVM [11] C: 2222.9, kernel: rbf, class weight: balanced Standard Scaler
Light GBM min data in leaf: 20 Max Abs Scaler

TABLE III: Classifiers parameters and data transformation algorithms used for the experiment where sensors were under the
keyboard for the keystroke inference attack.

(a) Sensors under keyboard (b) Sensors under plastic table (c) Sensors under glass table (d) Sensors under metallic table

Fig. 7: Keystroke inference performance on the 10-class problem involving the numbers 0-9

Classifier used with Data transformation Attack Surfaces
Classifier Data Transformation UK PS GS MS
Light GBM Standard Scaler 0 0 3 3
Light GBM Min Max Scaler 0 0 1 1
Light GBM Max Abs Scaler 2 1 1 1
Light GBM Robust Scaler 1 1 0 0
XGBoost Sparse Normalizer 0 0 2 2
XGBoost Standard Scaler 3 5 0 0
SVM Standard Scaler 1 1 1 1
SVM Sparse Normalizer 0 0 1 1
Random Forest Standard Scaler 1 1 1 1
Kneighbors Robust Scaler 0 0 1 1
Kneighbors Sparse Normalizer 1 0 0 0
ExtraTrees Min Max Scaler 0 0 0 0
of classifiers used for ensemble algorithm 9 9 11 11

TABLE IV: Instances of classifiers and data transformation
algorithms used for the Voting Ensemble algorithm for the
keystroke inference experiments on Under the Keyboard (UK),
Plastic Surface (PS), Glass Surface (GS) and Metal Surface
(MS) placements. Each instance has a classifier and data
transformation algorithm with different parameters.

depicted by Figure 9. The figure attempts to answer the
question of whether the distance of a key from the sensors has
some relationship to how accurately it is inferred. For example
93.67% is the average accuracy of the keys 7, 8 and 9, while
90% is the average accuracy of the keys 0, 1, 4 and 7. As

Placement Pre processing Classifier Parameters
UK Max Abs Scaler Light GBM min leaf size = 20

PS Standard Scaler XGBoost

col sample: 0.5,
eta: 0.05,
max depth: 9,
max leaves: 15,
estimators: 400

GS Max Abs Scaler Light GBM min leaf size = 20
MS Max Abs Scaler Light GBM min leaf size = 20

TABLE V: Stand-alone classifiers used for the key inference
attack for Under the Keyboard (UK), Plastic Surface (PS),
Glass Surface (GS) and Metal Surface (MS) placements.

one moves from the top row towards the bottom row, average
accuracy seems to reduce just as one moves from middle
column to the left and right-most columns of numbers. These
patterns suggest an increase in accuracy as one moves towards
the sensors, however, this might need further investigations to
see how strongly it holds up.

B. Detecting Keyboard Movements

Computer users do not move their keyboards that much
given a permanently deployed computer system at work or
home. However, movements indeed do happen, and, when the
sensors are deployed under the keyboard, this might cause
such an amount of misalignment between the keyboard and
sensors that the attack degrades or even fails. We investigated

Fig. 8: Confusion Matrix for the Voting Ensemble when the
sensor was under the keyboard

Fig. 9: Accuracy-Distance relation for the Voting Ensemble
when the sensor was under the keyboard

the impact of keyboard rotations and translations (see Figure
10) from the default position at which the attack was built. The
rotations were 15 degrees clockwise and anticlockwise about
the center of the keyboard (Figure 10a), while translations
were 6cm in each of the four directions shown on Figure 10b.

Figure 11 shows a plot of 2 features for the rotation and
translation cases when the sensors were under the plastic sur-
face. We only discuss results from this surface as it reveals the
general pattern seen with the other cases. Observe that in this
2D space, the cases are very well-clustered and quite distinct
from the default positions, R0 and T0. This pattern suggests
that a large catalogue of features coupled to a classification
engine should easily detect these keyboard movements. When
we proceeded and ran classification experiments we obtained
classification accuracies of between 92.3% and 98.6%, con-
firming these keyboard movements should be easily detected.

V. RELATED RESEARCH

In this section we discuss similar lines of research and how
it differs from our own work.

The study in [14] proposed a password extraction and
inference system named Snoopy. They developed an app that

(a) Rotation of keyboard

(b) Translation of keyboard

Fig. 10: Keyboard translations and rotations studied when the
sensors were under the table. Rotations are through an angle
of 15 degrees about the keyboard center while translations are
6cm in the directions indicated.

listened to the smart watch’s IMU sensors for any screen
tapping or password swiping by the user. Using a deep neural
network the attacker were able to detect passwords entered on
Android or Apple watches.

Also, in [15] the authors studied an exploit that analyzed
the data collected by the accelerometer at each screen tap or
swipe event, a malicious users can, with a high accuracy, infer
the input password/PIN or pattern. For every 5 guesses, the
proposed model achieved 43% and 73% accuracy for PINs and
patterns respectively in a controlled setting and 20% and 40%
accuracy respectively, in uncontrolled scenario. In another
study, [16] users’ key-based PINs and/or passwords could
be retrieved by analyzing data captured by motion sensors
embedded in wearable devices. The study indicated that the
patterns created by wrist movements carry enough information
about which key the user typed on the keypad. The study in
[17] investigated an attack aimed at inferring the words typed
by a user while wearing a smart watch on their left hand, which
provides substantial information for typed words inference.

This huge body of prior work emphasizes that motion sensor
attacks pose a significant threat that is of much interest to
the security community. However, these past works typically
investigate scenarios where the keys typed on the virtual
keyboards of smart-phones/watches. This puts our work apart
from past research in at least the following three ways: (1)
First, the small form factor of a phone/wearable should natu-
rally result into a fundamentally different vibration mechanics
relative to the case of the much larger computer keyboard
where the keys are spread over a much larger area, (2) The

(a) Keyboard rotation

(b) Keyboard translation

Fig. 11: Impact of keyboard translation and rotation on the
features captured by motion sensor. The meanings of rotations
R0 through R2 and translations T0 through T4 are diagram-
matically illustrated in Figure 10.

method of human interaction with a phone differs from that
with a keyboard, indicating a different vibration dynamics
between the two kinds of attacks (i.e., a phone is held in one
hand while the other hand types while a computer keyboard
is placed on a table while the hand(s) type on it). The above 2
points imply that past research which showed these attacks on
a phone/watch would not necessarily answer the question of
whether the same attacks are feasible on a computer keyboard,
(3) Attacks in the smart phone/watch scenario assume a
malware to somehow be installed on the phone/watch so as to
record the vibrations and send the data to the attacker. This is
a very strong assumption that we do not make in our attack
as we simply require the attacker to attach Bluetooth-enabled
IoT sensors to the target.

To summarize, the idea that multiple sensors could be glued
under a desktop keyboard and successfully capture vibration
patterns unique to keys on the keyboard is a new line of attack
that no past research has explored. Further, the question that a
series of motion sensors hidden under a table could leak data
typed on a keyboard located on the top of the table has never
been studied before. Our work is the first to examine these
lines of attack.

VI. CONCLUSION

In this paper, we have designed and evaluated an attack in
which motion sensors hidden under the computer keyboard or
table on which a keyboard sits are used to spy on keyboard

inputs. We have shown the attack to be highly effective when
the sensors are hidden under the keyboard, and somewhat
less effective though still posing a significant threat when
the sensors are under plastic, metallic or glass tables. This
is a highly practical attack given that the sensors required are
cheaply available on the market, come packaged with all the
supporting software and thus require no hardware knowledge,
and most importantly, do not require the attacker to circumvent
any defenses on the victim’s computer.

REFERENCES

[1] W. motion, “Wt901blecl mpu9250 high-precision 9-axis gyro-
scope+angle(xy 0.05° accuracy)+magnetometer with kalman filter, low-
power 3-axis ahrs imu sensor for arduino,” https://www.wit-motion.com/
9-axis/wt901blecl-mpu9250-high-precision.html, (accessed January 31,
2022).

[2] Logitech, “Mk270 wireless keyboard,” https://www.logitech.com/en-us/
products/combos/mk270-wireless-keyboard-mouse.920-004536.html,
(accessed January 31, 2022).

[3] “Number generator,” https://numbergenerator.org/
random-4-digit-number-generator#!numbers=5&length=8&addfilters=,
(accessed January 31, 2022).

[4] M. Christ, “tsfresh.feature-extraction package,” https://tsfresh.
readthedocs.io/en/latest/api/tsfresh.feature extraction.html, 2016
(accessed January 5, 2022).

[5] ——, “tsfresh.feature-selection package,” https://tsfresh.readthedocs.io/
en/latest/api/tsfresh.feature extraction.html, 2016 (accessed January 5,
2022).

[6] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ser. KDD ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 785–794.
[Online]. Available: https://doi.org/10.1145/2939672.2939785

[7] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y.
Liu, “Lightgbm: A highly efficient gradient boosting decision tree,” in
NIPS, 2017.

[8] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
pp. 5–32, Oct 2001. [Online]. Available: https://doi.org/10.1023/A:
1010933404324

[9] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine Learning, vol. 63, no. 1, pp. 3–42, Apr 2006. [Online].
Available: https://doi.org/10.1007/s10994-006-6226-1

[10] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “Knn model-based
approach in classification,” in On The Move to Meaningful Internet
Systems 2003: CoopIS, DOA, and ODBASE, R. Meersman, Z. Tari, and
D. C. Schmidt, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 986–996.

[11] M. Hearst, S. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support
vector machines,” IEEE Intelligent Systems and their Applications,
vol. 13, no. 4, pp. 18–28, 1998.

[12] scikit-learn developers, “Preprocessing data,” https://scikit-learn.org/
stable/modules/preprocessing.html, 2007 (accessed January 10, 2022).

[13] A. Dogan and D. Birant, “A weighted majority voting ensemble ap-
proach for classification,” in 2019 4th International Conference on
Computer Science and Engineering (UBMK), 2019, pp. 1–6.

[14] C. X. Lu, B. Du, H. Wen, S. Wang, A. Markham, I. Martinovic, Y. Shen,
and N. Trigoni, “Snoopy: Sniffing your smartwatch passwords via deep
sequence learning,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 1, no. 4, pp. 1–29, 2018.

[15] A. J. Aviv, B. Sapp, M. Blaze, and J. M. Smith, “Practicality of
accelerometer side channels on smartphones,” in Proceedings of the 28th
annual computer security applications conference, 2012, pp. 41–50.

[16] C. Wang, X. Guo, Y. Wang, Y. Chen, and B. Liu, “Friend or foe? your
wearable devices reveal your personal pin,” in Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security,
2016, pp. 189–200.

[17] H. Wang, T. T.-T. Lai, and R. Roy Choudhury, “Mole: Motion leaks
through smartwatch sensors,” in Proceedings of the 21st Annual Inter-
national Conference on Mobile Computing and Networking, 2015, pp.
155–166.

