
Deep Neural Exposure: You Can Run, But Not Hide Your Neural
Network Architecture!

Sayed Erfan Arefin
Texas Tech University

Lubbock, TX, United States
saarefin@ttu.edu

Abdul Serwadda
Texas Tech University

Lubbock, TX, United States
abdul.serwadda@ttu.edu

ABSTRACT
Deep Neural Networks (DNNs) are at the heart of many of today’s
most innovative technologies. With companies investing lots of
resources to design, build and optimize these networks for their cus-
tom products, DNNs are now integral to many companies’ tightly
guarded Intellectual Property. As is the case for every high-value
product, one can expect bad actors to increasingly design tech-
niques aimed to uncover the architectural designs of proprietary
DNNs. This paper investigates if the power draw patterns of a GPU
on which a DNN runs could be leveraged to glean key details of its
design architecture. Based on ten of the most well-known Convo-
lutional Neural Network (CNN) architectures, we study this line of
attack under varying assumptions about the kind of data available
to the attacker. We show the attack to be highly effective, attaining
an accuracy in the 80 percentage range for the best performing
attack scenario.

CCS CONCEPTS
• Security and privacy→ Software and application security;

KEYWORDS
power attack; deep neural networks; GPU; side channel

ACM Reference Format:
Sayed Erfan Arefin and Abdul Serwadda. 2021. Deep Neural Exposure: You
Can Run, But Not Hide Your Neural Network Architecture!. In Proceedings
of the 2021 ACM Workshop on Information Hiding and Multimedia Security
(IH&MMSec ’21), June 22–25, 2021, Virtual Event, Belgium. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3437880.3460415

1 INTRODUCTION
A growing number of emerging learning-oriented applications are
centered around deep neural networks (DNNs). From voice as-
sistants [19] to video processing software [15] and embedded AI
hardware [22] to mention but a few, DNNs are increasingly the
core underlying technology. Companies invest huge amounts of
money (in cloud computing costs, engineer time, acquisition of
training data, etc.) to design and optimize these DNNs and thus
have them as part of their tightly guarded Intellectual Property. On

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IH&MMSec ’21, June 22–25, 2021, Virtual Event, Belgium
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8295-3/21/06. . . $15.00
https://doi.org/10.1145/3437880.3460415

the other hand, malicious entities are interested in deciphering the
DNN(s) for personal gain (e.g., to build their own version of the
proprietary tools). In this paper, we study the question of whether
power measurements made while a DNN runs on a workstation
could be used to determine the architecture of the DNN.

In its simplest form, our threat scenario/model is as follows.
While a DNN performs classification on a GPU owned by the adver-
sary, the GPU’s power draws over time are recorded. This data is
then fed to machine learning algorithms which have been trained
to classify the DNN architecture. The adversary is somehow unable
to access the raw DNN code and thus cannot simply review it and
determine the architecture. However, he/she can run the DNN and
access the power measurements. In practice, this would loosely
map to the scenario described below.

Assume a company that owns some proprietary DNN-centric
software tool. Such a tool could for instance perform some highly
sought-after (proprietary) video analytics function. Customers can
buy copies of this tool just like other commercial software and
install it on their systems to perform the video processing func-
tion. However, they cannot access the code directly (i.e., the tool is
protected from decompilation). Some unscrupulous customer (i.e.,
adversary) who seeks to create a knock-off version of the tool buys
it and repeatedly feeds it a bunch of bogus inputs while collecting
power measurements as the tool runs on the GPU. We tackle the
question of whether the adversary could leverage this power data
to make meaningful inferences about the DNN architecture under-
lying the tool. Figure 1 shows a flow diagram of our hypothesized
attack scenario.

A core assumption underlying this line of attack is that in the
real world, practitioners typically draw from a small number of
well-known, high performing architectures and use them in their
entirety, or modify them slightly (e.g., through transfer learning) to
fit the custom application at hand [21]. For example, the VGGNet
architecture [18] is widely used in image localization tasks [4] and
has several widely used derivatives (see 8 of them here [3]) which
build upon the core VGGNet framework. Other architectures such
as ResNet [13], AlexNet [16], etc., are widely used, both in their
original forms or as derivatives of the original form [21]. Because
each of these architectures has certain signature components and
features (e.g., size of inputs, nature of connections, number of layers,
distribution of arithmetic operations, etc.), it is plausible that the
execution of the network poses some form of power consumption
signature that emanates from these features/components.

We hypothesize that a hacker who is working to reverse-engineer
some DNN-oriented application could leverage such power signa-
tures, and use machine learning algorithms to try and infer the
network in use, or at least which network is most similar to that

https://doi.org/10.1145/3437880.3460415
https://doi.org/10.1145/3437880.3460415

Malicious user providing inputs
to repeatedly trigger DNN activity

GPU

 Proprietary DNN app installed and
running on personal computer

 GPU power measurement data from DNN
activity feed to classifiers, which infers

network architecture

Classifier

1 2 3

Figure 1: Attack Scenario

used by the target application. The paper studies this line of attack
in the context of a desktop setting. Our contributions are summa-
rized below.

(1) Studying GPU power patterns of ten widely used neu-
ral network architectures: We take ten of the most popu-
lar CNN architectures on various image processing tasks and
study their power consumption signatures while they run
the classification step on a GPU installed in a Windows desk-
top computer. Some of these architectures are drawn from
the ImageNet competition [2] while others were developed
elsewhere in academia or industry. We run these networks
on two tasks: the classical cats vs dogs classification task, and
a classification of random images. By feeding the emergent
power measurement data into machine learning classifiers,
we find that the underlying architecture can be classified
with an accuracy of over 80% in the best case.

(2) Studying the connection betweenGPUpower drawpat-
terns of the ten core neural network architectures and
some of their most well-known derivatives: We tackle
the question of whether power measurement data drawn
from the ten core architectures could be used to infer their
derivatives. Specifically, we build a classifier that uses train-
ing data from 7 (of the 10 core) architectures that have one
or more variants for which pre-trained models are publicly
available. We then study how this classifier assigns 32 dif-
ferent well-known variants of these 7 architectures during
the test phase into the 7 architectural classes. In practice,
this contribution tackles an interesting scenario where the
attacker has access to data from a small number key architec-
tures, but is faced with the task of inferring some proprietary
architecture (assumed derived from the key architectures)
for which no data is yet available. We show this form of
the attack to attain a classification accuracy of up to 41%,
revealing the attack to pose a threat even when no training
data from the target network is available.

2 RELATED RESEARCH
To our knowledge, the only other work to have studied DNNs/CNNs
with regard to the line of attack covered in this paper is that by Xi-
ang et al. (See Arxiv pre-print [20] and a smaller conference version
of their work [21]). In that work, a Raspberry Pi was used to run 4
different CNN architectures (i.e., AlexNet, InceptionNet, MobileNet,
and ResNet) and 2 of their variants while an external data acquisi-
tion card registered the associated power draw measurements. The
idea behind using a Raspberry Pi was to simulate the scenario of
an ARM Cortex-based embedded AI device that uses a DNN. On

applying machine learning algorithms to the power measurements,
they were able to infer the CNN architecture with an accuracy of
up to 96.5 % in the best-performing configuration. While Xiang et
al. also investigate the question of power measurements potentially
giving away information about the underlying DNN/CNN archi-
tecture, their work has at least 3 fundamental differences from our
work. These are as follows.

(1) Scope of the problem: Xiang et al. studied 4 core archi-
tectures and 2 variants derived from two of them (i.e., 6
architectures in total). Our work on the other hand studies
10 core architectures and 32 different variants of the 10 ar-
chitectures under three different attack scenarios. Our wider
scope provides insights into the power patterns of a much
broader range of architectures and how these patterns might
enable side-channel attacks on the architectures.

(2) Experimental platform used: Xiang et al. use a Raspberry
Pi to run the DNNs. Our experiment on the other hand is
run on a fully-fledged Windows desktop. Being a minimal
computer with just a few peripherals and software services
installed, the Pi provides an environment that is markedly
different from that on a desktop computer. In particular, the
Pi enables fine-grained power draw patterns to be monitored
absent of the kinds of noise and perturbations that can be ex-
pected from the many peripherals on a fully-fledged desktop
computer. Ours is the first work to show that some form of
a DNN power fingerprint can be extracted despite multiple
peripherals competing for power in a desktop setting.

(3) Processing device: In this work, we use a GPU to run the
DNN/CNNs while power draw measurements on the GPU
are registered. Xiang et al. on the other hand run their ex-
periments on CPU. Because DNNs are largely run on GPUs
for most practical applications, our work studies this line of
attack in a setting that very closely mirrors typical end-user
conditions seen today.

(4) Target threat scenario: The design of experiments in Xiag
et al.’s work is focused on the scenario of an embedded AI
hardware that contains the DNN to be attacked. The Pi pro-
vided them with the closest approximation to this kind of AI
device. Our work on the other hand is done with a software
installation in mind — we set our experiments and evalu-
ation from the perspective of an end-user who installs a
DNN-oriented software with the aim to launch the attack
on the DNN.

A number of other attacks on neural networks have recently
been showcased. In [11], a timing attack that monitors the neu-
ral network’s execution time is shown to infer the depth of the
network. Leveraging reinforcement learning, the attack ultimately

enables the construction of an equivalent architecture within rea-
sonable margins of error. In [14], the utilization of the GPU, PCIe
Bus, and Device Memory Bus are used to drive a reconstruction
of the neural network architecture. Other lines of attack include
those that seek to invert the model (e.g., [12]), those which seek to
generate adversarial examples that evade the neural network clas-
sifier (e.g., [17]), and those which use electromagnetic emanations
to reverse-engineer the network (e.g., [7]). These papers emphasize
the importance of research that studies attacks on neural networks.
However, none of them leverages GPU power draw patterns for
network inference as done in this paper.

3 EXPERIMENTAL DESIGN
3.1 Overview of neural network architectures

under investigation
As described in Section 1, our research is focused on ten Convolu-
tional Neural Network (CNN) architectures that are very widely
used in deep learning applications. Most of them originate from
the ImageNet Large Scale Visual Recognition Challenge (ILSVR)
[2], a competition in which practitioners build neural network ar-
chitectures to compete on various image classification tasks. Table
1 shows these architectures as well as a summary of some of the
features that distinguish between them. Deeper details on these
networks can be found here [1]. In some of the plots and figures
in the subsequent sections, we refer to the 10 architectures using
the numerical identifiers, 1 to 10 for simplicity of our presentation.
The mappings between the identifiers and architectures are shown
in Table 1.

3.2 Data Collection
Recall from Section 1 that the attack scenario studied in this work
assumes an adversarial end-user who runs a DNN on an end-host
while collecting power measurement data. To simulate this scenario,
our collection of power measurement data focused on the testing
phase (as opposed to the training phase) since this is the step that
would typically run on an end-user’s device. Our data collection ex-
periments hence entailed running the neural network classification
step for each of the architectures studied in the paper. We used the
pre-trained models published with the PyTorch API documentation
[3]. Two different datasets were used for attack: a dataset of 50
images of cats and 50 images of dogs (alternately referred to as
Dataset-1) and a dataset of 100 random images (alternately referred
to as Dataset-2). These datasets were obtained from the ImageNet
site [10]. This diversity in datasets helped ensure that we observe
patterns that are not an artifact of a particular dataset.

The datasets are first fed to each neural network while the GPU-
Z software collects data during the test time. The software produces
a log file with the power data. Since, the log file cannot be deleted
when the software is collecting data, between every sample of data
there is a pause of 2 seconds when the log file is copied to a differ-
ent directory. The GPU-Z software is restarted after testing each
network. Between the restart, the log file cleared. This emergent
dataset is then passed to Machine learning classifiers to classify the
DNN architecture.

Experiments were run on aWindows desktop computer with the
following specs: Intel Core i7 (9700K) processor, Nvidia RTX 2060

GPU, 32 GB of Memory, and 512 GB PCIe based Solid State Drive.
During the data collection process, it was ensured that no graphics-
intensive services were running in order to minimize the noise in
GPU power patterns. In practice, the adversarial end-user would
easily ensure the same condition since they would have full control
of the computer being used. We recorded power measurements
from the following power sensors available on our GPU card.

• Power Draw Board: The total power drawn by the GPU
board in Watts.

• Power GPU chip: The total power consumed by the GPU
chip in Watts.

• Power MVDDC: The power drawn by the Graphics card
memory in Watts.

• Power PCIe Slot: The power drawn by the GPU from the
PCIe 16x slot in Watts.

• Power 8-pin: The power drawn by an 8-pin power connec-
tor external to the motherboard, connected directly from
the power supply. A GPU can have more than one 8-pin
connector. Each 8-pin connector can draw a maximum of
150 Watts.

• Power Consumption TDP: TDP stands for Thermal De-
sign Power. It is an indicator of the maximum power draw
by a computer chip.

We used the “GPU-Z” tool by Techpowerup [6], for power mea-
surement. The tool collected sensor data continuously and wrote
them in the log file while the DNN ran. The sensor read interval
was set to 100 samples per second.

3.3 Features and classifiers used
We received power sensor readings for every images provided as
input to the CNNs. For each power sensor reading, we extracted
a wide range of time and frequency domain features using the
TSFresh library [5]. Table 2 shows the list of features extracted for
each sensor. We leave out a detailed description of these features
due to space limitations. Details can however be found on the
TSFresh documentation page [5]. For every image fed to each of
the CNNs, a total of 108 feature vectors were received. We split the
power features dataset with a 70-30 ratio for training and testing.
Given the training and testing datasets we conducted classification
using the Multi-class Logistic Regression [8] and Random Forest
[9] classifiers.

4 ATTACK PERFORMANCE EVALUATION
4.1 Preliminary data exploration
Before running the classification, we first undertook some prelimi-
nary exploration of the power measurement data in order to get
some sense of whether it might depict obvious patterns that suggest
the attack could work. Figure 2 shows plots that express some of
our results from this preliminary analysis.

Figure 2a shows a box plot of the raw power data from the power
“Power 8-pin” sensor for all ten architectures. A box plot captures
basic statistics such as the median, upper quartile, maxima, lower
quartile, etc., as well as insights into outlier behavior. One obvious
pattern depicted by the plot is the difference in spread/variability
exhibited by the different architectures as seen from the maximum

Identifier CNN Architecture Architecture Layers Network Properties Accuracy
Conv FC PL Input Size Total Parameters Dropout Salient Feature Top-5 Top-1

1 AlexNet 5 3 1 256x256x3 62,378,344 Used while training Deeper 80.3% 57.2%

2 DenseNet 121 120 1 5 224x224x3 7.0 Million 20% after every Conv layer
(except for the 1st)

Each layer
connected to all 92.29% 74.98%

3 DPN 131 44 1 2 224x224x3 79.5 Million None New & reuse features 80.07% 94.88%
4 Inception v4 38 0 5 299x299x3 43 Million 80% before SoftMax Parallel kernels 95% 80%
5 NASNet Large 33 0 24 299x299x3 3.1 - 27.6 Million 50% on SoftMax. Architectural search 96.2% 82.7%
6 PolyNet 85 1 3 331x331x3 76.1 Million 0 to 25% Stochastic paths Optimized deeper 95.75% 81.29%
7 ResNet 18 17 1 2 224x224x3 11,511,784 None Shortcut connections 90.58% 71.78%
8 SqueezeNet 14 0 4 256x256x3 1,248,424 50% after 9th fire module Compressed 80.3% 57.5%
9 VGG11 8 3 5 224x224x3 138,423,208 First 2 FC with 50% Fixed-size kernels 90.4% 71.8%

10 Xception 36 1 5 299x299x3 22,855,952 50% before the
Logistic regression layer Extreme Inception 94.5% 79%

Table 1: High-level comparison of CNN architectures and identifiers used in our research

Features Sensors
Benford ABS Sum of Changes, Standard Deviation, Binned Entropy, Lempel Ziv Complexity, Variance, Abs Energy,

Count Above Mean Minimum, Variation Co-efficient, Last Location of Minimum, C3, Last Location of Maximum, CidCe All

Benford Correlation All except MVDDC & PCIe Slot
Table 2: List of features extracted from the power sensors.

1 2 3 8 9 104 5 6 7
Neural Networks

24.5

25

25.5

26

26.5

27

Po
w

er
 c

on
su

m
ed

 (W
at

t)

(a) A box plot of raw measure-
ments from the “Power 8-pin”
sensor for all the architectures 1
to 10.

3400 3600 3800 4000
Auto Co-variances of Power GPU chip

3500

4000

4500

5000

5500

6000

A
bs

ol
ut

e
En

er
gy

 o
f P

ow
er

 G
PU

 c
hi

p

1
3
6
9

(b) A plot of 2 features for 4 of
the architectures.

Figure 2: Preliminary observations on the power measure-
ment data of the ten DNN architectures. The identifiers on
the x-axis of the box plot are listed in Table 1.

and minimum values across the plot (for example, architecture 6
has much more spread than 2 and 3). Differences in medians are
subtle but also clear to the eye. While this is just raw data studied
in terms of simple statistical metrics, the box plot reveals the first
signs that the 10 architectures could indeed depict different power
patterns.

In Figure 2b, we take this a step further and visualize two features
extracted from the raw data. The figure only has 4 architectures
which gave us a clear visual pattern. Observe that these four archi-
tectures are very clearly separated in the 2D space. Other pairs of
features (results not shown here due to space limitations) revealed
equally promising patterns. With this kind of promise depicted in
this very low dimensional space, we conjectured that a more elabo-
rate catalog of features coupled with machine learning algorithms
should be able to discriminate between the neural network archi-
tectures based on power measurements. These results encouraged
us to proceed to implement a fully-fledged classification of the data.

Logistic Regression Random Forest
Dataset 1 62.96% 73.57%
Dataset 2 69.43% 82.81%

Table 3: Average Accuracy

4.2 Classification results
We analyze the attack in three different configurations, each of
which having different assumptions and aims for the attacker. De-
tails and results from each of the configurations follow

4.2.1 Attack Configuration #1: This configuration assumes the at-
tacker has access to training data from the ten core models and the
victim uses one of the ten models. Hence the attack is a 10-class clas-
sification problem in which the attacker wants to know which of
the ten classes maps to the victim. The practical justification of this
scenario lies in the fact that many practitioners use the core DNN
architectures exactly as designed and calibrated by academia or
industry entities such as Google. Attack Configuration #1 captures
the threat posed to such practitioners/victims if the adversary were
to use the same core models to build the machine learning-based
attack system.

Table 3 and Figure 3 summarize our results from this config-
uration. Table 3 shows the classification accuracy for Datasets 1
and 2 for both classifiers used. The highest accuracy (Random For-
est) is just under 83%, pointing to the lethality of the attack as
compared to a random attack which would attain only about 10%
accuracy. For each classifier, Dataset-2 (i.e., the random images
dataset) reveals a better performance than Dataset-1 (cats and dogs
images) by over 6 percentage points. We conjecture that the diver-
sity of image properties in the random images dataset triggered
a wide variety of neural network behaviors (e.g., dynamics of ad-
ditions/multiplications, activations, etc.), which in turn produced
more diverse power measurements that exhibited stronger gener-
alization power when trained on the classifier. The cats and dogs
dataset likely produced a power pattern that was tightly tied to

(a) Dataset 1 (50 Cats and 50 Dogs images from imageNet) (b) Dataset 2 (100 randomly sampled images from ImageNet)

Figure 3: Confusion matrix of Random Forest Classification performed on Dataset-1 and Dataset-2. The actual labels of the
classes, which are identified with numbers in this figure, can be found in Table 1.

these two kinds of images, limiting the generalization power of a
classifier built from this dataset. In practice, the attacker will have
complete control over which inputs to provide to the system. Our
findings here suggest that inputs exhibiting high variability might
be the attacker’s best strategy.

Figure 3 provides a more fine-grained look at the results shown
in Table 3. In particular, the figure shows how the classifier treated
each of the ten classes. We focus on the Random Forest classifier
since it performed best. The dark diagonals re-emphasize the high
accuracy of this classifier as already seen in Table 3. In Figure
3a, architectures 2 and 3 depict two of the worst classification
performances (as seen from the light blue shades). Notably, however,
these two architectures depict some of the best accuracies in Figure
3b. Since the difference between Figures 3a and 3b is just the dataset
used, Figure 3 emphasizes the impact of the nature of inputs on the
performance of this line of attack.

4.2.2 Attack Configuration #2: In the second attack configuration,
we assume that practitioners (also the same as victims in our case)
have adapted the core well-known architectures to their custom
application scenario by creating new variants. Relative to the core
(or base) architecture, such variants typically have changes in vari-
ables such as sizes of inputs, kinds of activation functions, numbers
of different kinds of layers, etc. Such a variant (or variants) would
be proprietary and very tightly guarded. In our research, we hence
assume that, for training purposes, the attacker only has access to
the core architectures but does not know, or have access to, the
variant used by the victim (application).

The attacker’s intent in such a case is to simply determine the
family to which the variant belongs. The attacker will seek to
address a question of the form: Is the victim using a variant of
the core architecture A? If the attacker can answer that question
accurately, they would be a step closer to mapping out the finer
details of the variant. To implement this variant of the attack, we use
data generated from the core architectures for training. For testing,
we then use the variants. A classification is deemed accurate if a

DNN Architecture Variants
SqueezeNet SqueezeNet 1, SqueezeNet 1.1

DPN DPN68, DPN68B, DPN92,
DPN98, DPN131

DenseNet DenseNet121, DenseNet161,
DenseNet169, DenseNet201

InceptionNet BN InceptionNet, InceptionNet v3,
InceptionNet v4

VGG
VGG11, VGG13, VGG16, VGG19,

VGG11 BN, VGG13 BN,
VGG16 BN, VGG19 BN

ResNet
ResNet18, ResNet34, ResNet50,

ResNet101, ResNet152,
CaffeResNet101, FB ResNet152

NASNet NASNet Mobile, NASNet-A Large,
P-NASNet 5 Large

Table 4: 7 Core DNN architectures and their well-known
variants.

variant is classified as the core architecture from which it is derived.
Note that of the ten architectures studied in this work, only 7 have
variants published at this time (see PyTorch page [3]). Hence, we
train on the 7 core architectures and then test on the variants of
these architectures.

Table 4 shows the 7 core architectures and their derivatives as
used in this form of the attack. Details of these architectures and
variants can be found here [3]. When we run this version of the
attack, we got a classification accuracy of 42%1. Considering that
this was a 7-class problem, a random attacker would have got about
14% accuracy. Hence the attack, even in this challenging setting
where the attacker has no exact data to train with, still poses a
noteworthy threat.

1Due to space limitations, from here on-wards, we only report results from Dataset-2
since it generally performed best.

CNN True positive CNN True positive
BN Inception 23.80% NASNet Mobile 96.20%
Caffe ResNet 66.70% PNASNet 5-large 100%
DenseNet 121 100% ResNet 101 60%
DenseNet 161 57.70% ResNet 152 65%
DenseNet 169 32% ResNet 18 68.20%
DenseNet 201 33.30% ResNet 34 66.70%

DPN 131 100% ResNet 50 62.50%
DPN 68 60% SqueezeNet 1.0 100%
DPN 68b 79.30% SqueezeNet 1.1 85.70%
DPN 92 85% VGG 11 81%
DPN 98 44.40% VGG 11 BN 52%

FBResNet 152 33.30% VGG 13 41.90%
Inception v3 25% VGG 13 BN 37.50%
Inception v4 75% VGG 16 59.30%
NASNet large 100% VGG 16 BN 45.80%
VGG 19 BN 68% VGG 19 48.40%

Table 5: True positive rates of 32 variants of our core DNN
architectures.

4.2.3 Attack Configuration #3: In the third and final configuration,
we again assume that the victim is using a variant of a core archi-
tecture. The only difference this time is that the attacker also has
access to all available variants and can hence use them for training.
This configuration is similar to Configuration # 1 in that data classes
used in the training set are also available in the testing set. The two
major differences between the two configurations however are that:
(1) in practice this would have a much larger number of classes
(here we have 32 in total as opposed to just 10 in Configuration #1),
and that, (2) many of the (32) classes are so similar to each other
since they could be minor tweaks of a common architecture. Thus,
while Configuration #3 has a fundamental similarity to Configu-
ration # 1, the former should be more challenging due to the two
points raised above.

We obtained a classification accuracy of 64.17% on attack con-
figuration #3. Table 5 shows a detailed breakdown of how each
of our 32 classes contributed to this overall accuracy. The figure
shows the true positive rate of each class (i.e., the equivalent of the
leading diagonal of a confusion matrix). Observe that each of the
classes performed way above random guessing (which is about 1

32
or 3.13%). Some even hit 100%, pointing to the distinctiveness of
their GPU power draw signatures. Overall, the table reveals that,
even with the very large number of classes, the attack still performs
very well.

5 CONCLUSION
In this paper, we have designed and evaluated an attack that infers
the CNN/DNN architecture based on GPU power draw patterns.
We have evaluated the attack under three different configurations
and shown it to be highly effective in each of them. In practice, this
line of attack could be utilized by a hacker who intends to reverse-
engineer a proprietary application that depends on some DNN. One
potential limitation of our work is that proprietary apps in real life
might have other operations running concurrently with the DNN,
resulting in the blurring of the DNN signature and the impact of
the attack. This potential limitation notwithstanding however, our

key finding of DNNs having consistent power signatures provides
valuable insights to the DNN research/industry community who
should find it to be a useful first step towards a deeper exploration
of this line of attack under scenarios reflecting various relevant
use-cases.

REFERENCES
[1] [n.d.]. Large Scale Visual Recognition Challenge 2017 (ILSVRC2017).
[2] [n.d.]. Large Scale Visual Recognition Challenge (ILSVRC). http://www.image-

net.org/challenges/LSVRC/. Accessed: 2021-02-24.
[3] [n.d.]. Pretrained models for Pytorch. https://github.com/Cadene/pretrained-

models.pytorch. Accessed: 2021-02-24.
[4] [n.d.]. Results of ILSVRC2014.
[5] [n.d.]. Tsfresh. https://tsfresh.readthedocs.io/en/latest/. Accessed: 2021-02-25.
[6] 2021. TechPowerUp GPU-Z. https://www.techpowerup.com/gpuz/
[7] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. 2019. CSI NN:

Reverse Engineering of Neural Network Architectures Through Electromagnetic
Side Channel. In 28th USENIX Security Symposium (USENIX Security 19). USENIX
Association, Santa Clara, CA, 515–532. https://www.usenix.org/conference/
usenixsecurity19/presentation/batina

[8] Dankmar Böhning. 1992. Multinomial logistic regression algorithm. Annals
of the Institute of Statistical Mathematics 44, 1 (01 Mar 1992), 197–200. https:
//doi.org/10.1007/BF00048682

[9] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (01 Oct 2001), 5–32.
https://doi.org/10.1023/A:1010933404324

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09.

[11] Vasisht Duddu, D. Samanta, D. V. Rao, and V. Balas. 2018. Stealing Neural
Networks via Timing Side Channels. ArXiv abs/1812.11720 (2018).

[12] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model Inversion
Attacks That Exploit Confidence Information and Basic Countermeasures. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security (Denver, Colorado, USA) (CCS ’15). Association for Computing Machin-
ery, New York, NY, USA, 1322–1333. https://doi.org/10.1145/2810103.2813677

[13] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning
for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2016), 770–778.

[14] X. Hu, Ling Liang, L. Deng, Shuangchen Li, Xinfeng Xie, Y. Ji, Yufei Ding, Chang
Liu, T. Sherwood, and Yuan Xie. 2020. Neural Network Model Extraction Attacks
in Edge Devices by Hearing Architectural Hints. ArXiv abs/1903.03916 (2020).

[15] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei.
2014. Large-Scale Video Classification with Convolutional Neural Networks. In
2014 IEEE Conference on Computer Vision and Pattern Recognition. 1725–1732.
https://doi.org/10.1109/CVPR.2014.223

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classifi-
cation with Deep Convolutional Neural Networks. In Advances in Neural Informa-
tion Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger
(Eds.), Vol. 25. Curran Associates, Inc., 1097–1105. https://proceedings.neurips.
cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[17] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay
Celik, and Ananthram Swami. 2017. Practical Black-Box Attacks against Machine
Learning. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security (Abu Dhabi, United Arab Emirates) (ASIA CCS ’17).
Association for Computing Machinery, New York, NY, USA, 506–519. https:
//doi.org/10.1145/3052973.3053009

[18] K. Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks
for Large-Scale Image Recognition. CoRR abs/1409.1556 (2015).

[19] G. K. Venayagamoorthy, V. Moonasar, and K. Sandrasegaran. 1998. Voice recog-
nition using neural networks. In Proceedings of the 1998 South African Symposium
on Communications and Signal Processing-COMSIG ’98 (Cat. No. 98EX214). 29–32.
https://doi.org/10.1109/COMSIG.1998.736916

[20] Yun Xiang, Zhuangzhi Chen, Zuohui Chen, Zebin Fang, Haiyang Hao, Jinyin
Chen, Yi Liu, Zhefu Wu, Qi Xuan, and Xiaoniu Yang. 2019. Open DNN Box by
Power Side-Channel Attack. arXiv:1907.10406 [cs.CR]

[21] Y. Xiang, Z. Chen, Z. Chen, Z. Fang, H. Hao, J. Chen, Y. Liu, Z. Wu, Q. Xuan, and
X. Yang. 2020. Open DNN Box by Power Side-Channel Attack. IEEE Transactions
on Circuits and Systems II: Express Briefs 67, 11 (2020), 2717–2721. https://doi.
org/10.1109/TCSII.2020.2973007

[22] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W. Hwu, and D. Chen. 2018.
DNNBuilder: an Automated Tool for Building High-Performance DNN Hard-
ware Accelerators for FPGAs. In 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 1–8. https://doi.org/10.1145/3240765.3240801

http://www.image-net.org/challenges/LSVRC/
http://www.image-net.org/challenges/LSVRC/
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://tsfresh.readthedocs.io/en/latest/
https://www.techpowerup.com/gpuz/
https://www.usenix.org/conference/usenixsecurity19/presentation/batina
https://www.usenix.org/conference/usenixsecurity19/presentation/batina
https://doi.org/10.1007/BF00048682
https://doi.org/10.1007/BF00048682
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1109/CVPR.2014.223
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1109/COMSIG.1998.736916
https://arxiv.org/abs/1907.10406
https://doi.org/10.1109/TCSII.2020.2973007
https://doi.org/10.1109/TCSII.2020.2973007
https://doi.org/10.1145/3240765.3240801

	Abstract
	1 Introduction
	2 Related Research
	3 Experimental Design
	3.1 Overview of neural network architectures under investigation
	3.2 Data Collection
	3.3 Features and classifiers used

	4 Attack performance evaluation
	4.1 Preliminary data exploration
	4.2 Classification results

	5 Conclusion
	References

