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Abstract
In this paper, we introduce an acoustic side-channel attack that

extracts crucial information from Deep Neural Networks (DNNs)

operating on GPUs. Utilizing a Micro-Electro-Mechanical Systems

(MEMS) microphone with an extensive frequency range, we demon-

strate that the distinct sounds produced during DNN operations

can inadvertently reveal significant details about the network’s

architecture. Through extensive experimentation with a variety

of neural networks from the ImageNet competition, we validate

the efficacy of this novel attack vector. Our contributions include

a detailed methodological framework for capturing and analyzing

acoustic data, empirical validation using prominent ImageNet mod-

els, and a comprehensive sensitivity analysis to assess the attack’s

robustness under varying conditions. This research not only un-

covers a previously unexplored vulnerability in neural network

security but also provides a foundation for developing more robust

defense mechanisms against such innovative side-channel attacks.

CCS Concepts
• Security and privacy → Software reverse engineering; Soft-
ware security engineering.
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1 Introduction
The widespread application of Deep Neural Networks (DNNs) has

positioned them at the forefront of innovative developments, mak-

ing them vital components of corporate intellectual property. As

companies invest substantial resources in developing these net-

works, protecting the intricate details of their configurations and
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parameters from competitors and adversaries has become para-

mount. This necessity underscores the importance of understand-

ing potential attack vectors that could compromise DNNs, thereby

informing the development of robust defense strategies.

This paper introduces a novel side-channel attack that extracts

critical information from DNNs.We reveal how subtle acoustic ema-

nations, produced by the hardware components of a computer when

a DNN is operational on a GPU, can inadvertently divulge crucial

details about the network’s architecture. Our approach involves the

use of a Micro-Electro-Mechanical Systems (MEMS) microphone

positioned near the GPU. This microphone, with a broad frequency

range of 100Hz to 80kHz, captures a wide spectrum of sounds,

including those beyond human hearing.

The overarching hypothesis behind the attack is that when aGPU

is heavily loaded by an application such as a neural network, the

GPU components and surrounding peripherals can emit a variety

of sounds due to various physical processes. Such sounds might

include those due to thermal expansion and contraction of the GPU

and surrounding hardware following changes in temperature, coil

whine and capacitor squeal when inductors and capacitors undergo

electro-mechanical vibrations, noise from power supply units and

voltage regulation modules due to power supply fluctuations, etc.

The frequency and intensity of these sounds should vary depending

on the workload, which in turn is a function of the type of neural

network running on the GPU.

We demonstrate the efficacy of this line of attack through rigor-

ous experimentation involving an array of neural networks from the

prestigious ImageNet competition [25]. These networks, renowned

for their performance and widespread adoption, serve as building

blocks, or as a reference, for numerous proprietary applications.

The paper makes the following contributions:

(1) Acoustic Side-channel Attack on DNNs: We pioneer a novel

side-channel attack vector, focusing on the acoustic emissions from

GPUs during neural network operations. Our study is groundbreak-

ing in demonstrating that these acoustic signatures contain dis-

cernible patterns that can be analyzed to deduce the configuration

and architecture of the executing neural network. This revelation

not only enriches the current understanding of potential security

vulnerabilities in neural networks but also marks a critical advance-

ment in the ongoing exploration of neural network security.

(2) Detailed Methodology of Attack: We present a comprehensive

methodology to capture and analyze the acoustic emanations from

GPUs. This includes details on the fabrication of the mic enclo-

sure, the setup of the measurement environment, and details of the

machine learning pipeline used to extract meaningful information

from the captured audio data. Our detailed methodology offers a

replicable framework for further exploration in this area.
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Figure 1: Overview of the attack

(3) Empirical Validation using ImageNet Models: Utilizing a range
of neural network models from the prestigious ImageNet compe-

tition, we provide empirical evidence of the effectiveness of our

acoustic side-channel attack. This validation is critical, as these

models are representative of real-world applications and widely

used in proprietary systems. By demonstrating the attack’s effec-

tiveness on these models, we underline the practical implications

and potential risks associated with such vulnerabilities.

(4) Sensitivity Analysis of Attack Performance:We conduct a de-

tailed sensitivity analysis to assess the robustness of our acoustic

side-channel attack. The influence of the microphone’s distance

from the target device was examined in our experiments. This

analysis is crucial to understanding the practical limitations and

effectiveness of the attack, providing insights into its feasibility in

real-world scenarios.

2 Threat Model
Scenario Overview: Our attack applies to situations where an

entity has physical access to a device that runs a proprietary Deep

Neural Network (DNN). Such physical access might for instance be

possible when a DNN is deployed on a customer-device, a scenario

that tends to be seen in privacy-sensitive or performance-critical

applications. Such applications are typically deployed to compute

locally on the customer-device in order to handle data efficiently

and securely. The attacker in this case would be the customer of this

DNN technology. Examples of DNN-centric applications that tend

to have this customer-side deployment include those on healthcare

devices, autonomous vehicles, military drones, and edge computing

solutions such as Amazon’s AWS Greengrass [1].

Attacker’s Capabilities and Limitations: (i) Physical prox-
imity and system: The attacker, leveraging their physical access,

strategically positions a high-fidelity microphone close to the GPU

to capture acoustic emissions. They may have user-level access to

the computing device but lack the privileges to view or modify the

proprietary aspects of the DNN due to robust protection mecha-

nisms, such as: code obfuscation, anti-tampering and self-destruct

routines.

(ii) Input control without output access: While the attacker can-

not access or interpret the neural network’s outputs, they can ma-

nipulate its inputs. For instance, in an autonomous vehicle, the

attacker might direct the vehicle’s cameras toward specific stimuli.

The key data for the attacker are the acoustic signals emitted by the

GPU, which are recorded by the strategically placed microphone

under the attacker’s control.

(iii) Computational resources and open-source knowledge: The

attacker has access to the source code of popular open-source neu-

ral network architectures. These are run to generate acoustic sig-

nals that are then used to train the audio-based attack model — a

model trained to translate acoustic emissions into insights about the

DNN’s structure. The training of this model is done on a separate

computing device on which the attacker has full access and control.

Attacker Objectives: The primary goal is to clandestinely ex-

tract Intellectual Property by inferring details about the proprietary

DNN’s architecture. This could range from decoding the exact ar-

chitecture to identifying elements of well-known architectures that

the proprietary DNN might be based on. Note that even partial

information (such as a generic family of the target neural network)

can be highly valuable, since it would allow the attacker to focus

their efforts while they build their own networks (s) or to engage in

techniques such as transfer learning. This could significantly save

on resources needed for developing a DNN from scratch. Figure 1

shows a flow diagram of the attack.

3 Related Research
In this section, we summarize recent research on some of the most

studied DNN side-channels.

3.1 Cache side-channel
Yan et al. [27] present a method for using cache side-channel attacks

on DNN architectures during inference by observing cache usage

patterns in GEMMoperations. Using Prime+Probe and Flush+Reload

methods, the attack identifies GEMM call sequences and dimen-

sions, targeting VGG and ResNet DNNs. For VGG, the attack re-

duced the search space from over 5.4 trillion architectures to 16. For

ResNet, it reduced the search space from approximately 6 × 10
46

architectures to 512. Hong et al. [11] use the Flush+Reload tech-

nique to deduce DNN architectures, focusing on layer count and

operation types in CNNs such as DenseNet, VGG, ResNet, Incep-

tion, Xception, and MobileNet. They mention that an attacker can

recreate the network architecture. Duddu et al. [7] extract neural

network architectures using timing side-channels, targeting VGG

on CIFAR10. They measured execution time to infer model depth

using a regression model trained on different depths and times.

Reinforcement learning optimizes the reconstruction of the model



Music to My Ears: Turning GPU Sounds into Intellectual Property Gold AISec ’24, October 14–18, 2024, Salt Lake City, UT, USA

architecture. Their method reconstructed substitute models with

test accuracy close to the target models.

3.2 Electromagnetic (EM) side-channel
A study by Batina et al., [4] demonstrates a technique to infer the

architecture of neural networks, specifically targeting Multilayer

Perceptrons (MLPs) and Convolutional Neural Networks (CNNs),

using electromagnetic (EM) side-channel analysis. The study, con-

ducted on ARM Cortex-M3 micro-controllers, shows the ability to

extract network parameters like layer types, neuron counts, and

weights from EM emissions and timing data. This approach exposes

significant security vulnerabilities in neural network architectures,

especially pertinent in embedded and IoT devices where such de-

tails are often confidential. Their experiments were able to reveal

the activation functions, the number and arrangement of neurons

across layers of the networks.

Honggang et al., [28] investigate electromagnetic (EM) emissions

as a side-channel to reconstruct deep neural network (DNN) models.

This research highlights the vulnerability of DNNs to side-channel

attacks, where EM signals inadvertently emitted by hardware run-

ning these models can reveal critical information. The work inferred

the underlying network architecture and estimated the parameters

by a combination of margin-based and adversarial learning tech-

niques. The authors were able to demonstrate that the proposed

attack can accurately recover large-scale neural network models

by utilizing the EM side-channel information.

3.3 Power side-channel
Wei et al. [26] introduce a power side-channel attack on FPGA-based

CNN accelerators, recovering input images from power traces on

the MNIST dataset without needing detailed network parameters.

This attack poses a privacy risk in deep learning, achieving up to

89% recognition accuracy. Malan et al. [19] use Dynamic Voltage

and Frequency Scaling (DVFS) as a side-channel to imprint neural

network frequency trace signatures on the CPU, which were ana-

lyzed to infer network architecture. Targeted convolutional neural

networks were from the MobileNet and EfficientNet families. Ex-

periments were conducted on Intel processors, Nvidia GPUs, and

ARM processors (Raspberry Pi 4, NVIDIA Jetson TX2).

Sayed et al. [3] observed power consumption patterns with

consumer-grade software. They investigated if this information

can be used to infer key details of DNN architectures running on

the GPU. The researchers used a consumer-grade software typically

used to observe GPU statistics. The sensor readings were used in

their research. They employed ten of the most well-known Convo-

lutional Neural Network (CNN) architecture models from Pytorch

in their experiments.

The study by Jha et al. [14] examines a two-stage attack method

aimed at extracting the architecture of deep neural networks (DNNs).

Utilizing nvidia-smi to assess performance on P100 and P4000 GPUs.

To defend against such vulnerability, the authors proposed a secure

version of MobileNet-V1. Xiang et al. [29] presented a novel method

for model extraction in deep learning that utilizes the Intel Running

Average Power Limit (RAPL). They focused on power leakage in

ReLU activation functions through the software interface. Their

proposed technique successfully extracted a 5-layer MLP and a

Lenet-5 CNN.

3.4 Other side-channels
The study by Hua et al. [13] presents a vulnerability in CNNmodels

running on hardware accelerators. It shows that the structure and

weights of a CNN model can be reverse-engineered through mem-

ory access patterns and input/output analysis of the accelerator.

They conducted the experiments on AlexNet. The research by Hu

et al. [12] explores a method to extract neural network models in

edge devices by analyzing architectural hints. The attack scenario

involves bus snooping techniques to monitor PCIe and memory bus

events in a passive manner. The targeted devices are heterogeneous

CPU-GPU platforms.

Papernot et al. [22] discuss an approach to conduct black-box

attacks against deep learning classifiers. The method involves ob-

serving model outputs and using them to train a substitute model.

This substitute is then used to create adversarial samples that fool

the target model. The authors demonstrate the experiments of this

approach using the MNIST and GTSRB datasets.

How we differ from these works: The primary difference

between these works and our work is that we showcase a novel

side-channel — i.e., the acoustic side-channel against DNNs. To our

knowledge, no previous research has showcased this side-channel

on DNNs. By virtue of being non-invasive, the EM side-channel is

arguably the closest to our acoustic side-channel. Below, we further

highlight differences between the EM and acoustic side-channels:

Physical Basis of the Signals: Acoustic emissions capitalize on

mechanical vibrations and sound waves generated by the physi-

cal operation of hardware components, specifically GPUs under

load from DNN computations. These sounds, including those be-

yond the range of human hearing, are fundamentally different from

electromagnetic signals. Acoustic emissions result from mechani-

cal stresses and thermal dynamics within the hardware, offering

a unique insight into the computational processes that are not

captured by other side-channels.

In contrast, EM side-channels involve capturing electromagnetic

waves emitted by electronic components during operation. These

emissions are tied directly to electrical and magnetic fields influ-

enced by circuit activities which, although useful for deducing

information like power consumption and data flow, do not interact

with or reflect the mechanical and thermal properties of the system

that our acoustic analysis reveals.

Methodological Innovations: Our use of a standard MEMS micro-

phone to capture acoustic signals drastically reduces the barrier to

entry for conducting such attacks. Unlike EMI analysis, which often

requires specialized, costly equipment and close physical proximity

or invasive access to the target device, acoustic side-channel attacks

can be executed with more commonly available and less obtrusive

tools. This accessibility makes it a significant concern for a broader

range of applications and environments.

Scope of Vulnerability Exposure: While EM can reveal information

about electronic switching and data flows, acoustic analysis exposes

a different layer of the computational process—how the physical
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machine reacts to different computational loads. This could poten-

tially lead to discoveries of new vulnerabilities specific to particular

hardware configurations or operational conditions.

4 Attack Design
In our research, we designed a custom data collection tool using

widely available hardware, including an Arduino board, a MEMS

microphone, and a 3D-printed parabolic reflector, to effectively

capture audio data. The hardware was chosen for its accessibility.

We discuss our hardware setup in Section 4.1, the Arduino code

implementation for faster analog-to-digital conversion in Section

4.2, and the creation of the final tool using an open-source 3D

reflector in Section 4.3.

Figure 2: Schematics for our data collection tool.

4.1 Hardware Setup
Our hardware utilizes a Knowles SPU0410LR5H-QB microphone,

capable of capturing sounds from the GPU and its surroundings.

This miniature microphone records both audible and ultrasonic

frequencies, with a range of 100 Hz to 80,000 Hz [17]. To record the

upper limit of 80,000 Hz, the ADC requires to be set to a minimum

sampling rate of 160,000 samples per second. The microphone was

connected to an Arduino MKR Zero, which uses a SAMD21 32-bit

ARM Cortex M0+ processor [2] capable of sampling up to 350,000

samples per second. The microphone’s data pin was connected to

the Arduino’s analog input pin (A2). A schematic was created for

the connections using Easy EDA [8] which is presented in Figure

2. In our setup, we used the power supply from the USB of the

attacker’s computer.

4.2 Arduino Implementation Details
In the Arduino software, we perform high-speed data acquisition

from an analog microphone and send the data to a computer for

storage in WAV format. The data is transmitted via serial communi-

cation at a baud rate of 2,000,000 bps, where a Python script saves it

to a file. The ADC is set to 12-bit resolution for improved accuracy.

It samples from the analog pin A2, connected to the microphone

input. The code uses continuous sampling via interrupts, minimiz-

ing processor overhead. It configures the ADC’s control register

B (CTRLB) to divide the 48 MHz input clock by 256, reducing it

to 187.5 kHz, meeting the minimum requirement of 160 KHz. An

ADC Interrupt Service Routine (ISR) handles data conversion and

transmission.

4.3 Parabolic Reflector for the Microphone
To enhance the collection of audio data from the microphone, a par-

abolic reflector was placed behind it. The reflector helped give the

Figure 3: One-fourth of
the parabolic reflector is
being printed on a 3D
printer.

microphone some amount of di-

rectionality as soundwaves com-

ing from a particular direction

(in our case the direction where

the GPU is situated) were fo-

cused towards the microphone.

This also helped improve the

Signal-to-Noise Ratio (SNR), en-

abling sounds from the intended

source to become clearer and

louder relative to background

noise. Using 3D printing tech-

nology, the reflector was con-

structed and then attached to a

modified monitor stand. This re-

flector design was adapted from

an existing model [30]. Figure 3

captures a snapshot of the 3D

printer while printing one quar-

ter of the reflector.

We devised a compact hous-

ing at the reflector’s back to hold

the Arduino board. The stand for

our enclosure was made by re-

purposing old monitor stands.

The complete assembly of the

microphone and parabolic reflector is shown in Figure 4. We used a

MakerBot z18 3D printer with Fused Deposition Modeling technol-

ogy, operating at a 100-micron layer resolution. Printing parameters

included a 215°C extruder, floor and roof heights of 0.8mm, a 0.2mm

layer height, and 0.8mm wall thickness. Infill density was set at

10%, and PLA filament was used.

5 Attack Experiments

Figure 4: Microphone sur-
rounded by the reflector

A Deep Neural Network is typ-

ically deployed to a system for a

specific task, for example, a con-

volutional neural network de-

ployed on a system to classify

images. When deployed in a sys-

tem, deep neural networks work

in test mode. For the scenario

mentioned earlier, a CNN de-

ployed to classify images will

not be performing training tasks,

but rather will typically be using

a pre-trained model to execute

its task. Images will be provided

as input to the CNN and it will

classify the image to output a

high probability label. For exam-

ple, if we provide an image of a
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Table 1: Detailed specifications of devices used for the experiments where CNN models were executed.

Device Type Device Name Architecture Full Computer Configuration

Operating

System

Tensorflow

Version

Cuda

Computability

Graphics Processing

Unit (GPU)

NVIDIA RTX

2060 Super

NVIDIA Turing

Architecture

Intel Core i7 9600K Processor, 16 GB RAM,

4 TB HDD, Nvidia 2060 Super GPU

Ubuntu

22.04 LTS

tensorflow-gpu

2.12

7.5

Single Board

Computer

NVIDIA Jetson

Nano 2GB

NVIDIA Maxwell

Architecture

Quad-core ARM Cortex-A57 Processor, 2GB

RAM, 32GB Storage, NVIDIA Maxwell architecture GPU

Nvidia’s version of

Ubuntu 18.04

tensorflow-2.0,

build from source

5.3

cat to the network, it should out-

put "cat" with high confidence; in some cases, also mention the

breed of the cat, such as "parsian cat". There are several factors that

affect the performance of this CNN. The device on which it is run-

ning has an impact based on the computability of the device. Some

CNN model architectures can perform better in classifying certain

images, and some can perform worse. In order to have a compre-

hensive evaluation of our attack, we considered these factors in our

experiments.

This section outlines the target devices used in the attacks (Sec-

tion 5.1) and the experimental setup for collecting acoustic data

(Section 5.2). We then discuss the CNN experiment configurations

(Section 5.3) and the image datasets used for classification (Section

5.4).

5.1 Target Devices
To simulate the victim of the attack, we used two different comput-

ing devices: a desktop computer and a single-board computer (SBC).

Detailed specifications for the two types of computing devices are

shown in Table 1. In the desktop computer scenario, we studied a

NVIDIA GPU — specifically, the NVIDIA RTX 2060 Super. NVIDIA

GPUs are widely used for their support of CUDA technology, which

is essential for TensorFlow GPU execution.

In the realm of emerging computing devices, single-board com-

puters (SBCs) are gaining prominence. Some SBCs now incorpo-

rate GPUs to facilitate neural network execution for applications

spanning smart cars, robotics, edge computing, IoT, and more. An

example of this category is the NVIDIA Jetson Nano [21], equipped

with an onboard GPU boasting CUDA capabilities. Consequently,

we incorporated this SBC into our experiments. Notably, configur-

ing the TensorFlow library on such SBCs required a custom build

process. The Tensorflow was built on Jetson Nano from the source

code because there were no installation sources available via wheel

on the platform. After building from the source, we ensured that

Tensorflowwas using CUDA on the platform. To run the pre-trained

models in the SBC platform, the existing models were converted to

a light version of this to run on the single-board computer. For this

conversion process, the "TFLiteConverter" was used from the Ten-

sorflow library. After conversion, the "Tensorflow lite interpreter"

was used to run the pre-trained model in the experiments [24].

5.2 Acoustic Data Collection
In our experimental setup, we strategically placed the microphone

adjacent to the computer to optimize the audio capture. To enhance

the quality of the recordings, we removed the computer’s side panel,

allowing for clearer sound transmission during data collection. This

can be observed in Figure 5. When experiments were conducted

with single-board computers (SBCs), the microphone was specifi-

cally oriented to directly face the SBC, ensuring precise audio data

collection.

Graphics Processing Unit (GPU) of a computer emits noise gen-

erated by the fans on board based on the computing load on the

device. There are other components on board that can also generate

acoustic noise such as capacitors etc. The devices involved in our

experiments had fans installed on them (The desktop GPU and also

the single board computer). We controlled the GPU fan’s speed to

mitigate its acoustic impact. This was achieved by fixing the GPU

fan’s speed at 60% and disabling the dynamic fan speed control fea-

ture. This adjustment was crucial in ensuring a consistent auditory

environment, thereby reducing the potential for variable fan noise

to influence experimental results.

In the context of our experiments with the NVIDIA Jetson Nano,

we leveraged its ability to operate under different power modes.

We chose to enable the ’maximum power’ mode as opposed to the

standard 5-watt power limit. This setting was crucial because it

allowed the board to operate at its full potential, enabling us to

evaluate its performance under maximum computational load. Such

a configuration was instrumental in pushing the board’s capabilities

to their limits, providing a comprehensive understanding of its

performance characteristics in high-demand scenarios. In our data

collection setup, the acoustic data collected for training on the

victim’s computer were synchronized with the microphone setup

to precisely record audio when the CNN models were running on

the victim’s machine. For collecting the testing data, we choose

a different day in order to mitigate the possibility of background

noise being mistaken by the classifiers as part of the audio produced

when the CNN runs on the GPU.

Table 2: Base CNNs and Variants used in our 3 Attack Con-
figurations

Base Network Model Variants
ConvNeXt ConvNeXtBase, ConvNeXtLarge, ConvNeXtSmall

VGG VGG16, VGG19

ResNet ResNet50, ResNet152V2, ResNetRS420

InceptionNet InceptionV3, InceptionResNetV2

MobileNet MobileNet, MobileNetV2

DenseNet DenseNet121, DenseNet169, DenseNet201

NASNet NASNetMobile, NASNetLarge

RegNet RegNetX002, RegNetX160, RegNetY320

EfficientNet EfficientNetB0, EfficientNetB5, EfficientNetV2L

XceptionNet (No variants)

5.3 Attack Configurations
Our work is focused on Convolutional Neural Networks (CNNs),

given their popularity in an increasing range of applications. In
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(a) Desktop Computer (Front View) (b) Desktop Computer (Side View) (c) Single Board Computer Setup

Figure 5: Data Collection Setup

other words, the victim runs a CNN that the attacker seeks to make

inferences about. We specifically study the CNNs depicted in Table

2. All of these are from ImageNet, a competition from which the

best performing neural networks go on to be used as is, or adapted

by practitioners all over the world for their custom applications.

The first column of the table shows 10 CNN models (that is, the

base or core models), while the right column shows variants that

were derived from these base models. We use the CNNs in this table

to formulate 3 different attack configurations, described in detail in

the following.

5.3.1 Configuration 1. In this setup, the attacker has access to

the training data of ten core models, and the target uses one of

these models, making it a 10-class classification problem where

the attacker aims to identify the victim model. This scenario is

based on the common practice of using core CNN architectures as

prescribed and fine-tuned by the authors. Operation of pre-trained

TensorFlow models on the NVIDIA Jetson Nano requires additional

steps (see Section 5.1). Seven of the ten core models – Efficient net,

Dense net, Inception net, Mobile net, NAS net, Resnet, and VGG –

were deployed on the Jetson Nano for Configuration-1; thus, we

study this as a 7-class problem for the SBC (unlike the 10-class

problem on the desktop). Attack Configuration 1 highlights the risk

for practitioners using these core models if an adversary uses the

same models for a machine learning audio-based attack.

5.3.2 Configuration 2. In Configuration-2 of the attack, it is as-

sumed that the victim has customized the core widely recognized

architectures for their specific application needs by developing new

variants. Relative to the core architecture, such variants typically

have changes in some variables such as the number of layers, input

sizes, or number of hidden layers, etc.

In this scenario, the attacker only has access to implementations

of the core architectures and can thus collect audio data to train

learning models mapping to them. The attacker does not have

access to the specific variant(s) used by the victim(s) and can thus

not use these data for training. However, he/she can collect data

from these variants during the attack and try to match it against

the core models present in the training set. The objective of the

attacker in this context is to identify the architectural family of the

victim’s variant. Essentially, the attacker aims to confirm whether

the victim is using a derivative of a particular core architecture. A

successful identification would mark a preliminary step towards

uncovering more detailed aspects of the variant.

A classification is considered accurate if it correctly identifies

a variant as originating from its base core architecture. It is im-

portant to note that, among the ten architectures examined in this

study, nine currently have published variants. Consequently, our

training focuses on these nine core architectures, and our testing is

conducted on their respective variants (recall the second column of

Table 2). For Configuration-2 on the Nvidia Jetson Nano, a total of

17 variant models for the tf-lite were used on Nvidia Jetson Nano

experiments. On the other hand, 23 different variants were used for

the desktop setting.

5.3.3 Configuration 3. The final configuration is Configuration-

3 where we assume that the victim is using a variant of a core

architecture. In this scenario, we assume that the attacker has access

to all variants of the core models. During the training, the acoustic

data for the variants is thus used. This scenario is similar to our first

configuration but differs by way of having a much larger number

of classes (a total of 23 variants vs. 10 variants). Furthermore, some

of the variants are very closely related to each other, making the

classification process even more challenging. Again, we used 17

variants for the Jetson Nano.

5.4 Datasets for the Experiment
In addition to the three configurations discussed in Section 5.3

running on different target devices (Section 5.1), we introduced

another variable which is different types of images fed to the CNNs.

This section discusses the datasets used in CNNs for classification

tasks during acoustic data collection. We aimed to observe how

different images impact CNNs, as they can activate different parts

of the network. We collected acoustic data for each sample from

each dataset. This means that each image produced an acoustic data

sample in our experiment. 70 samples were collected to train the

attacker machine learning model. 30 samples were collected from

different images, which were not used in the previous 70 samples

for testing the attacker’s model. We collected training and test

data on different days to avoid capturing background noise in our

acoustic data. The images were taken from the Imagenet dataset

[6]. We used four different sets, applying each to all experimental

configurations. Details of these datasets are provided below.
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Dataset 1 – Single Grayscale Image: This dataset uses a single
grayscale image in all experimental setups with Convolutional

Neural Networks (CNNs). Each configuration is run 100 times to

collect acoustic side-channel data.

Dataset 2 – Single Color Image: This dataset uses a distinctive
color image in all experiments with Convolutional Neural Networks

(CNNs). It is the same image as in Dataset 1 but in color. Each

configuration is run 100 times to collect acoustic side-channel data.

Dataset 3 – Diverse Images of Cats and Dogs: The cats and
dogs dataset is a popular benchmark for testing neural networks

(CNN) [5]. We aimed to evaluate its impact on various configura-

tions by selecting 50 diverse images of cats and dogs. These images

were introduced to the target CNNs in all experimental setups to

observe performance.

Dataset 4 – A Variety of Random Color Images: This dataset
consists of 100 random, colorful images. Each image is systemat-

ically fed into the target Convolutional Neural Networks (CNNs)

in every experimental setup to observe their response to various

visual stimuli.

(a) MobileNet v2

(b) ConvNext

(c) RegNet X 002

Figure 6: Spectrograms of audio samples collected from target
device (Nvidia RTX 2060), when different CNN models were
tested.

Figure 7: Feature importance analysis of one of the configu-
rations: Configuration-1 for Dataset-1 on Nvidia Jetson Nano

6 Attack Performance Evaluation
As mentioned above in Section 5, we discuss that the attacker

collects acoustic data and trains its own machine learning model to

infer information about the convolutional neural network running

on the victim device using acoustic data. In the following section,

we first explore and discuss the acoustic data collected in Section

6.1. Afterwards, we discuss the classification results in Section 6.2.

Finally, we extend our attack experiment with a sensitivity analysis

of our experiment by changing the distance between the attacker

microphone setup and the victim computer in Section 6.3.

6.1 Preliminary Data Exploration and Feature
Extraction

In this section we discuss our data preparation for classification. We

also discuss some characteristics of the acoustic data and several

extracted features of the acoustic data. We prepared raw analog data

for classification. Initially, the acoustic data from the experiments

were stored as analog values. These were then formatted into a

dataframe with analog values as arrays. We extract a multitude

of features from these datasets, each of which will be elaborated

upon in the subsequent sections. Missing values were replaced

using a mean imputer strategy. This feature extraction process is

crucial to transform raw acoustic data into meaningful insights for

classification.

Data Exploration In our preliminary evaluations, our primary

objective was to determine whether the recorded GPU audio data

from various CNNs could be visually differentiated, employing spec-

trograms for an in-depth visual inspection. Figure 6 presents three

distinct spectrograms corresponding to the audio data collected

from the target device Nvidia RTX 2060, when three different CNN

architectures were running: MobileNet v2, ConvNext Base, and Reg-

Net X 002, revealing that the spectrograms of these architectures

can be visually distinguished with remarkable clarity. Specifically,

the RegNet X 002 spectrogram unveils more pronounced and dis-

tinct sounds at frequencies of 35, 58, and 70 kHz, MobileNet v2

exhibits a softer, more subdued sound at the 40 kHz frequency

with progressively diminishing intensity toward the spectrogram’s

end, and ConvNext Base demonstrates more intense and vibrant

sounds across a broader spectrum of frequencies, making it stand

out prominently.
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(a) Chroma 1 (b) Fourier Tempogram (c) Tempogram

Figure 8: Features values for Chroma 1, Fourier Tempogram, and Tempogram, of the acoustic data collected during experiments
on Nvidia Jetson Nano on Dataset-1.

Table 3: Extraction of statistical and spectral features from
acoustic data using Numpy and Librosa libraries

Feature Type Extracted Features

Statistical

Features

Summation, Mean, Mean Absolute Deviation,

Standard Deviation, Variance, Skewness,

Standard Error of the Mean, Kurtosis

Spectral

Features

Spectral Centroid, Spectral Bandwidth, Spectral Flatness,

Spectral Rolloff, Tempograms, Spectral Contrasts,

Fourier Tempograms, Zero Crossing Rate, Mel-frequency

Cepstral Coefficients (MFCCs), Tempo, Chroma

Feature Extraction Various statistical and spectral features

were extracted. In this stage, statistical featureswere extracted using

NumPy [10], and spectral features were extracted using Librosa

[20], which specializes in audio signal processing. The extracted

features are shown in Table 3. During the spectral feature extraction

process, we used Librosa’s default parameters.

Statistical metrics such as summation, mean, mean absolute de-

viation (MAD), standard deviation, variance, skewness, standard

error of the mean, and kurtosis were calculated to describe the cen-

tral tendency, dispersion, and shape of the data. Spectral features

presented several acoustic properties of the samples. Several Mel-

frequency cepstral coefficients (MFCCs) and chromagram features

were produced by the feature extraction process. Features such as

centroids, bandwidths, flatness, roll-offs, zero crossing rate, spectral

contrast, rms, Fourier tempogram, and tempogram revealed sev-

eral properties of the acoustic data including the timbre, harmonic

structure, and intensity distribution across pitch classes.

We analyzed the impact of individual features on our classi-

fication experiments using Scikit-Learn’s Select-K-Best method,

selecting the top 10 features. This method scores each feature to

assess its relevance. We focused on Configuration-1 for Dataset-1

on Nvidia Jetson Nano. Figure 7 shows a bar chart of the top 10

features: Tempo, Spectral Contrast, RMS, Fourier Tempogram, Sum,

Tempogram 0, and Chroma 1, 2, 9, and 10. Figure 8 presents box

plots of Chroma 1, Fourier Tempogram, and Tempogram, highlight-

ing distinct value distributions for each model.

6.2 Classification Results
To analyze CNN architecture in acoustic data, we first extracted

features from the audio as discussed previously in Section 6.1. Af-

terwards, we generated experimental configuration files based on

Configuration-1, Configuration-2, Configuration-3, saving training

and testing data collected on different days as separate train and

test files for each configuration.

We used two strategies for data classification: a primary method

involving a neural networkwith 4 fully connected layers and a ReLU

activation function, built with PyTorch. The second approach using

traditional classification algorithms (Random Forest, K-Nearest

Neighbor, and Support Vector Classifier) with the Sklearn pipeline

from Scikit Learn [23]. The Sklearn pipeline used combinations of

scalers and classifiers.

The optimal neural network configuration is composed of hidden

layer sizes of 100, 50, and 25 for the second, third, and fourth layers,

respectively. This design ensured that the first layer’s input size

seamlessly aligned with the 60-feature DataFrame. The network

leveraged the powerful Cross Entropy Loss function and the Adam

optimizer.

For traditional algorithms, we applied Sklearn’s Select K-Best

with k=15 for feature selection and tested various combinations of

scalers (Standard Scaler, Min-Max Scaler, Normalizer, Robust Scaler,

Max Absolute Scaler, and Quantile Transformer) and classifiers,

identifying configurations with the highest test accuracies.

6.2.1 Experiment Configuration - 1. In this Configuration-1, as

described before in Section 5.3, the attacker tries to identify the

core models. Table 4 includes our results from this configuration for

all target devices. In Configuration-1, when using Dataset-4 on an

RTX 2060, the highest performance achieved with a neural network

was 85.50%. The features were scaled using the Min Max Scalar.

The network used a learning rate of 0.001, trained for 25 epochs,

with hidden layers of sizes 100, 50, and 25. The confusion matrix

for this experiment is presented in Figure 9. Traditional classifiers

on the same dataset and hardware achieved 73.50% accuracy with

the K-Nearest-Neighbor algorithm.

Experiments on Nvidia Jetson Nano for Configuration-1, tar-

geting a 7-class problem, achieved 95% accuracy with a neural
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Table 4: Classification results for Config-1, Config-2 and Config-3 across neural network and 3 algorithms: Random Forest,
K-Nearest Neighbour (KNN), and Support Vector Machine Classifier (SVC). Compare these with the accuracy of the random
guess in Table 5, which shows an attacker guessing without access to our attack.

Device Classifiers

Dataset-1 Dataset-2 Dataset-3 Dataset-4

Config-1 Config-2 Config-3 Config-1 Config-2 Config-3 Config-1 Config-2 Config-3 Config-1 Config-2 Config-3

Jetson Nano

Neural Network 95% 37% 85.29% 70.71% 30.00% 76.18% 75.00% 31.00% 76.47% 84.28% 31% 80.59%

K-Neighbors 85.00% 22.00% 75.88% 70.71% 21.00% 75.00% 73.57% 26.00% 71.47% 79.29% 24.00% 75.29%

SVC 82.86% 24.00% 75.00% 68.57% 30.00% 75.59% 70.71% 30.00% 70.29% 79.29% 30.00% 77.06%

Random Forest 96.43% 20.00% 83.53% 86.43% 20.00% 85.59% 85.00% 23.00% 75.00% 82.14% 20.00% 80.88%

RTX 2060

Neural Network 59.50% 30.00% 44.17% 72.50% 42.14% 47.50% 68.50% 30.00% 42.29% 85.50% 35.00% 52.29%

K-neighbors 59.50% 27.86% 50.83% 72.50% 30.00% 48.75% 65.50% 27.14% 49.79% 73.50% 30.71% 58.54%

SVC 61.00% 24.29% 42.50% 69.50% 35.71% 45.21% 66.50% 27.14% 46.04% 73.50% 31.43% 55.42%

Random Forest 69.50% 32.14% 41.67% 75.50% 28.57% 61.04% 66.50% 25.00% 56.46% 71.00% 29.29% 68.75%

Table 5: Random guess accuracy for two device types across
three configurations. The table shows the accuracy for an
attacker who guesses the class label in each attack configura-
tion.

Device Config-1 Config-2 Config-3

RTX 2060

10%

(10-class problem)

11.12%

(9-class problem)

4.35%

(23-class problem)

Jetson Nano

14.28%

(7-class problem)

14.28%

(7-class problem)

5.89%

(17-class problem)

Figure 9: Confusion matrix for the configuration-1 for
Dataset-4 on RTX 2060.

network on Dataset-1. Using a standard scaler, learning rate of

0.001, 25 epochs, and hidden layers of 50, 25, and 10 neurons, the

Random Forest algorithm achieved 96.43% accuracy. Both desktop

and SBC surpassed random guessing (Table 5).

Figure 10: This graph shows the neural network’s accuracy
at various microphone distances from the target machine,
averaged across the dataset.

6.2.2 Experiment Configuration - 2. In Configuration-2 of the at-

tack, recall that the victim has customized the core, widely recog-

nized architectures for their specific application needs by develop-

ing new variants. Using data set 2 on an RTX 2060, the classification

of neural networks under this configuration yielded a maximum

accuracy of 42.14%. The features were pre-processed using the Min-

Max Scalar before being input into the neural network, which had

a learning rate of 0.001. The training lasted 25 epochs with hidden

layer sizes of 50, 25, and 10 for Layers 2, 3, and 4, respectively.

Traditional classifiers, specifically K-Nearest Neighbor, achieved

35.00% accuracy on Dataset-4 using RTX 2060. Experiments on the

Nvidia Jetson Nano for Configuration-2 targeted a 7-class problem.

The neural network achieved 37% accuracy on Dataset-1 with a

Standard Scaler, a learning rate of 0.001, 100 epochs, and hidden lay-

ers of 200, 100, and 50 neurons. Classical classifiers yielded 30.00%

accuracy with the Support Vector Machine on Datasets 2, 3, and 4.

The results are presented in Table 4. This configuration performs

much better than random guessing (Table 5).

6.2.3 Experiment Configuration - 3. As mentioned in Section 5.3.2,

in Configuration-3, the attacker has access to the acoustic data for

the CNN models (along with the variants) running on the victim’s

computer. The attackers try to classify whether that specific variant

can be identified by using the CNN model’s acoustic data. The

summary of the classification performance under Configuration-3

is included in Table 4.
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Table 6: Microphone sensitivity analysis at varying distances, with CNN models run on an RTX 2060 GPU.

Distance Classifier

Dataset-1 Dataset-2 Dataset-3 Dataset-4

Config-1 Config-2 Config-3 Config-1 Config-2 Config-3 Config-1 Config-2 Config-3 Config-1 Config-2 Config-3

10 cm

Neural Network 59.50% 30.00% 44.17% 72.50% 42.14% 47.50% 68.50% 30.00% 42.29% 85.50% 35.00% 52.29%

K-Neighbors 59.50% 27.86% 50.83% 72.50% 30.00% 48.75% 65.50% 27.14% 49.79% 73.50% 30.71% 58.54%

SVC 61.00% 24.29% 42.50% 69.50% 35.71% 45.21% 66.50% 27.14% 46.04% 73.50% 31.43% 55.42%

RandomForest 69.50% 32.14% 41.67% 75.50% 28.57% 61.04% 66.50% 25.00% 56.46% 71.00% 29.29% 68.75%

60 cm

Neural Network 58.50% 26.42% 41.87% 56.50% 40.71% 42.29% 62.00% 27.85% 39.79% 63.50% 29.59% 43.75%

K-Neighbors 58.50% 22.14% 42.29% 57.50% 27.86% 43.96% 57.50% 22.14% 44.58% 59.50% 29.29% 46.88%

SVC 55.00% 21.43% 40.62% 51.50% 31.43% 47.08% 63.00% 23.57% 43.54% 64.00% 30.71% 55.21%

RandomForest 67.00% 12.29% 40.21% 74.50% 24.29% 58.96% 65.50% 24.29% 51.04% 66.00% 26.43% 63.96%

120 cm

Neural Network 57% 25.71% 40% 53.00% 39.28% 37.29% 52.50% 26.42% 31.45% 49.00% 27.85% 40.62%

K-Neighbors 50.50% 23.57% 29.79% 56.00% 27.86% 42.08% 55.00% 20.71% 41.04% 59.50% 25.71% 45.46%

SVC 54.50% 20.29% 26.46% 48.50% 27.14% 42.29% 63.00% 22.14% 41.67% 56.00% 30.00% 44.37%

RandomForest 42.00% 10.00% 38.54% 69.00% 17.14% 48.33% 52.00% 24.29% 35.21% 62.50% 22.14% 38.12%

In Configuration-3, using Dataset-4 on an RTX 2060, a neural

network achieved 52.29% accuracy with Min Max Scaled features,

a 0.0001 learning rate, 100 epochs, and hidden layers of sizes 100,

50, and 25. In contrast, traditional classifiers on Dataset-4 achieved

68.75% accuracy with the Random Forest algorithm. Experiments

on the Nvidia Jetson Nano for Configuration-3 solved a 17-class

problem. The neural network achieved 85.29% accuracy on dataset-

1 using a Min-Max Scaler, a learning rate of 0.0001, and 100 epochs.

The hidden layer sizes were 200, 100, and 50 for Layers 2, 3, and 4,

respectively, with Layer 1 having 60 features as input. The Random

Forest algorithm achieved 83.53% accuracy on dataset-1.

6.3 Sensitivity Analysis
To understand the sensitivity of attacks to different distances, we

expanded our experiments by positioning the microphone at vary-

ing distances from the target device and monitoring the impact on

classification accuracy. The microphone was set at distances of 10

cm (the initial position), 60 cm, and 120 cm from the target device,

always aimed at the computer with its side lid open. We replicated

our experiments across these distances using a computer powered

by a Nvidia RTX 2060 GPU. Subsequently, we executed the same

classification process as previously applied in the initial experiment

for all data sets and at each specified distance. The findings are

presented in Table 6

We averaged results from all datasets (Dataset-1 to 4) across

configurations (Configuration-1 to 3) for the neural network classi-

fication task and illustrated them using a bar graph. Figure 10 shows

that as the distance between the microphone and the target device

increases, the accuracy decreases for the three configurations of

the attack experiment. This decrease, expected due to the decrease

in Signal-to-noise ratio (SNR), is gradual, with changes between 5

and 20% as the distance increases from 10 to 120 cm.

One noticeable decrease in accuracy is that the classification

accuracy does not decrease as much as when the mic is moved from

60 to 120 cm, as it decreases when the mic is moved from 10 to

60 cm. We know from [16] that when a microphone is placed at

different distances from the sound source, constructive and destruc-

tive interference patterns significantly affect the recorded audio.

In smaller rooms with reflective surfaces, sound waves can create

standing waves, resulting in distinct regions of constructive and

destructive interference. As the microphone is placed at different

distances, it can pick up these regions, causing variations in the

recorded signal strength, and thus revealing acoustic information

in different strengths. Further exploration of larger distances is

planned for future work.

7 Conclusions and Limitations
In this study, we have introduced a novel acoustic side-channel

attack that poses a significant threat to the confidentiality of deep

neural networks (DNNs). Using the subtleties of acoustic emana-

tions from GPUs during DNN operations, captured via a simple

MEMS microphone, our research introduces a previously unex-

plored vulnerability within the realm of neural network security.

Through experimentation and analysis, especially on ImageNet

models, we demonstrated the feasibility of deducing DNN architec-

ture details. We explored the acoustic side-channel across various

CNN architectures and GPU devices using diverse image datasets.

A potential source of acoustic emissions in our research could be

capacitors within electronic devices, as demonstrated in previous

work where capacitors were manipulated to emit sound through the

inverse piezoelectric effect [15]. Our contributions detail techniques

for executing these attacks, and sensitivity analysis demonstrates

the attack’s adaptability, highlighting its broad potential impact.

In our experiments, the attack performs well in identifying CNN

architectures when the training data contains similar architectures,

and in certain cases, even slight variations can be recognized. When

the CNN presents a non-standard architecture that significantly

deviates from the training set, the success rate is unknown, and the

attack’s ability to accurately classify such architectures remains

uncertain. While conducting our experiments, we intentionally

kept all system processes running and did not disable any operating

system-related tasks. We ensured no additional user-side services

were active to maintain a controlled environment. However, the

presence of other running processes could potentially interfere

with or distort the attack.

Our work prompts a re-assessment of security measures for

DNNs, advocating for a model that mitigates acoustic side-channel

risks. Our study broadens side-channel attack research and sets a

precedent for future explorations, urging a multidisciplinary ap-

proach to defend against sophisticated cyber threats.
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A Appendix
A.1 Testing the Data Collection Tool
To ensure the effectiveness of our data collection hardware and

software, we conducted tests in both the audible and ultrasonic

spectrums. Our approach involved setting up distinct experiments

for each spectrum. We collected data from our data collection tool

and to visualize the audio data, we ran Fast Fourier Transformation

(FFT) on the collected data. The FFT length was set to 2048, and the

factor for averaging was set to 7. We test out the tool in 3 steps. At

first we apply no external sound, then we applied audible external

sound, and finally ultrasonic sound was applied to the tool.

(1) No external sound applied: When no external sound was

applied, we observed some background noise captured by

our tool which can be observed in Figure 11a.

(2) Only audible sound applied: For the audible range, which
spans from 20 to 20kHz, we employed a basic tone gener-

ator mobile app, capable of producing sounds within this

frequency range. We set the tone generator to a high-pitched

sound around 15 KHz and we observed a response in the

FFT plot. This can be observed in Figure 11b.

(3) Only ultasonic sound applied: To evaluate the response of
our data collection system to ultrasonic frequencies, we used

a commonly used ultrasonic distance measurement module,

the HC-SR04 [9], a staple in Do-it-yourself (DIY) projects.

This module generates ultrasonic sound in an 8-pulse pattern

to calculate the distance in front of the module [18]. We faced

the module directed to our data collection tool to see if there

was any change in the ultrasonic spectrum of the software.

We observed a response in the ultrasonic frequency range,

which is presented in Figure 11c.
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(a) When no external sound is provided

(b) When audible sound is provided.

(c) When ultrasonic sound is provided.

Figure 11: Data collection tool testing using Fast Fourier
Transformation (FFT) on the collected acoustic data.

A.2 Nvidia Jetson Nano Power Modes
The Nvidia Jetson Nano is capable of running neural networks for

tasks such as image classification, object detection, speech recogni-

tion etc. It can be operated in two power modes based on the usage

and required performance:

(1) 5Wmode is suitable for energy-efficient, battery-powered

applications. In this mode, the Jetson Nano operates in a

reduced power consumption mode. It enables the device for

portable and low-power use cases. But this mode signifi-

cantly limits the maximum performance of the device. In

order to enable this mode the following terminal command

can be executed.

sudo nvpmodel -m 1

(2) 10W mode enables the device’s maximum performance.

Operating in the 10Wmode allows the Jetson Nano to utilize

its full GPU and CPU capabilities, resulting in faster neural

network computation. The higher powermode alsomitigates

performance bottlenecks. The following command enables

the 10 watt mode.

sudo nvpmodel -m 0

A.3 Arduino Code
In our experiment, we needed to sample the analog data at a very

high speed as we were also capturing ultrasonic audio data. The

following Arduino code was used to incorporate a fast analog-to-

digital conversion. The microphone was connected to the A2 pin

of the Arduino Mkr Zero.

1 vo id s e tup ( ) {

2 / / High baud r a t e f o r f a s t e r da t a t r a n sm i s s i o n

3 Se r i a lUSB . beg in ( 2 0 0 0 0 0 0 ) ;

4 whi l e ( ! S e r i a lUSB ) ;

5 / / Ensure 12− b i t r e s o l u t i o n i s used

6 ana l ogReadRe so l u t i on ( 1 2 ) ;

7 / / D i s a b l e the ADC to c on f i g u r e i t

8 ADC−>CTRLA . b i t . ENABLE = 0 ;

9 / / Wait f o r s yn ch r on i z a t i o n

10 whi l e (ADC−>STATUS . b i t . SYNCBUSY ) ;

11 / / B a s i c ADC Con f i g u r a t i o n

12 / / D iv ide Clock ADC GCLK by 256

13 / / ( 4 8MHz/ 256 = 1 8 7 . 5 KHz )

14 / / thus , sampl ing r a t e i s 187500

15 ADC−>CTRLB . reg = ADC_CTRLB_PRESCALER_DIV256 |

16 ADC_CTRLB_RESSEL_12BIT ;

17 whi l e (ADC−>STATUS . b i t . SYNCBUSY ) ;

18 ADC−>SAMPCTRL . reg = 0 x00 ;

19 / / Wait f o r s yn ch r on i z a t i o n

20 whi l e (ADC−>STATUS . b i t . SYNCBUSY ) ;

21 / / Con f i gu re ADC to read from A2

22 / / AIN 11 i s A2 o f a rdu ino mkr ze ro .

23 / / So , AIN 11 i s 0x0B

24 ADC−>INPUTCTRL . b i t .MUXPOS = 0x0B ;

25 / / Wait f o r s yn ch r on i z a t i o n

26 whi l e (ADC−>STATUS . b i t . SYNCBUSY ) ;

27 / / Con f i g u r a t i o n f o r Cont inuous

28 / / Sampl ing and I n t e r r u p t s

29 / / Enab le ADC r e s u l t ready i n t e r r u p t

30 ADC−>INTENSET . b i t . RESRDY = 1 ;

31 / / Enab le s t a r t o f c onve r s i on on even t i npu t

32 ADC−>EVCTRL . b i t . STARTEI = 1 ;

33 / / Re− enab l e ADC

34 ADC−>CTRLA . b i t . ENABLE = 1 ;

35 / / Wait f o r s yn ch r on i z a t i o n

36 whi l e (ADC−>STATUS . b i t . SYNCBUSY ) ;

37 / / Enab le ADC i n t e r r u p t s

38 NVIC_EnableIRQ (ADC_IRQn ) ;

39 }

40 vo id loop ( ) {

41 / / T r i g g e r the f i r s t ADC conve r s i on

42 ADC−>SWTRIG . b i t . START = 1 ;

43 whi l e ( 1 ) {

44 / / l oop i s not used

45 }

46 }

47 / / ADC I n t e r r u p t S e r v i c e Rou t ine

48 vo id ADC_Handler ( ) {

49 / / Check i f the r e s u l t i s ready

50 i f (ADC−>INTFLAG . b i t . RESRDY ) {

51 / / Read the ADC r e s u l t

52 u i n t 1 6 _ t r e s u l t = ADC−>RESULT . reg ;

53 / / Send the r e s u l t over USB

54 Se r i a lUSB . w r i t e ( ( by te ∗ )& r e s u l t , s i z e o f ( r e s u l t ) ) ;

55 / / C l e a r the i n t e r r u p t f l a g

56 ADC−>INTFLAG . b i t . RESRDY = 1 ;

57 / / S t a r t the nex t conve r s i on

58 ADC−>SWTRIG . b i t . START = 1 ;

59 }

60 }
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