Dissecting the Origins of the Power Side-Channel in Deep Neural Networks

Sayed Erfan Arefin; Abdul Serwadda.

Texas Tech University

Department of Computer Science

IEEE AlloT Conference 2024

DNNs and Power Analysis Related works Our work: Study Tools

Introduction to DNNs and Power Analysis

- Deep Neural Networks (DNNs) powers advanced applications: Fraud detection, Computer vision etc.
- DNNs are substantial commercial assets requiring significant investment.
- The architectures of DNNs represent critical intellectual property.
- DNNs creates power consumption signatures.
- Power consumption analysis can be used to infer architectural details of DNNs.

DNNs and Power Analysis Related works Our work: Study Tools

Related works

- Hardware based measurements:
 - Méndez et al. conducted side channel attack on embedded DNNs in IoT.
 - Nagarajan et al. examined DNNs' susceptibility to side-channel attacks.
 - Batina et al. investigated neural network vulnerabilities on ARM based micro-controllers.
- Software based measurements: Our previous work focuses on inferring DNN architecture via power side-channel, using GPU-z software.

Introduction

Experiment Design Data Exploration Results Mitigation Conclusion DNNs and Power Analysis Related works Our work: Study Tools

Our work: Study Tools

- GPU sensors
 - GPUs are equipped with current and voltage sensors.
 - Used to maintain balance between power-consumption and temperature.
- We utilized Nvidia-smi tool
 - A native tool included with Nvidia drivers.
 - High resolution appx. 1000 samples/second
- Benefits:
 - Eliminates the need for physical access.
 - Eliminates the need for additional software.

Experiment Types Data Collection Data Collection Target Machines CNNs and their variants Experiment Configurations for Full networks

Experiment Design: Types of Experiments

- Software base power side channel attack:
 - We assume attacker gained access to system.
 - Attacker collects power data with nvidia-smi.
 - We focus on Convolutional Neural Networks.
 - Infer CNN model while running image classification on the GPU.
- Analysis of CNN modules or units:
 - CNNs are composed of convolutional, pooling, and fully connected layers, dropout and batch normalization
 - Analyze power signature for these modules.

Experiment Types Data Collection Data Collection Target Machines CNNs and their variants Experiment Configurations for Full networks

Experiment Design: Data Collection

- Captures power consumption data and stored in CSV.
 - 100 samples/sec for architecture inference
 - 1000 samples/sec for CNN units analysis
- Power measurement is conducted when the CNN image classification tasks are running.

Experiment Types Data Collection Data Collection Target Machines CNNs and their variants Experiment Configurations for Full networks

Experiment Design: Test Dasets

- For architecture inference attack, 80 samples for training, 20 for testing across two distinct datasets from imagenet.
 - Dataset 1: Cats and Dogs Dataset (50 images each).
 - Dataset 2: Random images (100 images).
- CNN units analysis was conducted using random tensors across typical input sizes.
 - Non-Fully Connected Layers: Common sizes include 32x32, 64x64, 128x128, 256x256, and 320x320 pixels.
 - Fully Connected Layers: Typically utilize input sizes of 196, 392, 784, 1568, and 3136.

Experiment Types Data Collection Data Collection Target Machines CNNs and their variants Experiment Configurations for Full networks

Experiment Design: Target Machines

GPU model	General Information		Architactura	Dowor	Number of cores		Momony Config	Collected from
	Usage	Year	Architecture	Fower	Tensor	Cuda	Welliory Colling	Collected from
GTX 1070 Ti	Home use	2017	Pascal	180 W	0	2432	8 GB GDDR5	Physical Access
RTX 2060 super	Home use	2019	Turing	175 W	272	2176	8 GB GDDR6	Physical Access
Quadro RTX 4000	Data-center	2018	Turing	160 W	288	2304	8 GB GDDR6	Remote access
Quadro RTX 5000	Data-center	2018	Turing	265 W	384	3,072	16 GB GDDR6	Remote access
Tesla v100	Data-center	2017	Volta	250 W	640	5120	32GB HBM2	Remote access
RTX A40	Data-center	2020	Ampere	300 W	336	10752	48GB GDDR6	Remote access

Table: GPU specification, usage, and access type in our experiments

Experiment Types Data Collection Data Collection Target Machines CNNs and their variants Experiment Configurations for Full networks

CNNs and their variants

- SqueezeNet: SqueezeNet 1.0, SqueezeNet 1.1
- DPN: DPN68, DPN68B etc.
- DenseNet: DenseNet121, DenseNet161 etc.
- VGG: VGG11, VGG13, VGG16 etc.
- ResNet: ResNet18, ResNet50, CaffeResNet101 etc.
- No variants: AlexNet, XceptionNet, PolyNet etc.

Experiment Types Data Collection Data Collection Target Machines CNNs and their variants **Experiment Configurations for Full networks**

Experiment Design: Experiment Configurations

Ore Neural Networks

- Focus on broader family classification for models with variants.
- Attacker has knowledge of some variants of the family.
- Identification of 11 core CNN models.

2 Configuration-2: Variant Classification

- Specific variant identification within a known neural network family.
- Challenges include 4-class, 5-class, and 10-class for variants in DenseNet, DPN, and ResNet.

③ Configuration-3: Comprehensive Classification

- Classification without prior knowledge of the network family.
- A 35-class problem including all core models and their variants.

Unit power signatures Feature Exploration

Studying the Power signatures of the units

 Convolution Layer power consumption for different inputs.

Figure: Convolution Layer

Unit power signatures Feature Exploration

Feature Exploration

Figure: Some features values for RTX 2060 from the results of Scikit learn's k-best (10 best) features, used in Experiment config-1 collected on dataset-2.

Classification Configuration-1 Configuration-2

Results: Classification

- Featuer Extraction: Extraction of statistical and spectral features using Numpy and Librosa libraries.
- Classification Algorithms: Employed Random Forest, XGBoost, and Light GBM.
- **Model Tuning:** Used Sklearn pipeline from Scikit Learn for fine-tuning models.
- Feature Selection: Features selected using Sklearn's Select K-Best method to choose the top 25 features.
- **Optimal Configurations:** Normalizer and Max Absolute Scaler emerged as effective choices for maximizing test accuracy.

Classification Configuration-1 Configuration-2

Results: Configuration 1

- Experiment Config-1 classification accuracy.
- Best results were produced on Nvidia 1070 Ti
 - Using XGBoost
 - Dataset 1: 94.00%
 - Dataset 2: 95.29%

Device	Classifier	Dataset 1	Dataset 2
	Light GBM	94.67%	94.41%
Nvidia 1070 Ti	Random Forest	94.33%	95.29%
	XGBoost	94.00%	95.29%
	Light GBM	71.76%	73.24%
Nvidia RTX 2060 Super	Random Forest	71.76%	71.76%
	XGBoost	70.29%	73.24%
	Light GBM	64.12%	70.00%
Nvidia A40	Random Forest	62.94%	67.94%
	XGBoost	67.06%	69.71%
	Light GBM	68.82%	69.71%
Nvidia RTX Quadro 4000	Random Forest	63.53%	67.94%
	XGBoost	68.24%	69.71%
	Light GBM	68.53%	78.24%
Nvidia RTX Quadro 5000	Random Forest	64.71%	75.00%
	XGBoost	68.53%	76.76%
	Light GBM	86.76%	86.47%
Nvidia Tesla V100	Random Forest	86.47%	85.29%
	XGBoost	87.06%	84.12%

Classification Configuration-1 Configuration-2

Results: Configuration 2 & 3

- Config-2: ResNet variants classification (10-class problem)
- Best results were produced on Nvidia 1070 Ti
 - Using Random forest
 - Dataset 1: 79.00%
 - Dataset 2: 80.00%
- Config-3: All variants classification (35-class problem)
- Best results were produced on Nvidia 1070 Ti
 - Using Random forest
 - Dataset 1: 85.67%
 - Dataset 2: 87.33%

Inject background noise Disable power measurement

Mitigation: Inject background noise

- Mitigation through Noise: Introduce noise into power data during CNN operations.
- Random Computation: Random matrix multiplications in GPU.
- **Experiment Setup:** Matrix size randomly varies from 2 to n, running experiment configuration 1 on Dataset 2.
 - Noise Levels: Different intensities (powers of 2) tested on Nvidia RTX 2060 Super GPU.
 - Impact on Accuracy: Increase noise until classifier accuracy approximates random guessing.

Inject background noise Disable power measurement

Mitigation: Inject background noise

- Background noise injection
- Experiment config-1
- Conducted on,
 - Dataset-2
 - RTX 2060

Figure: Classifier accuracy for different noise levels.

Inject background noise Disable power measurement

Impact on power consumption

- Avg. power consumption for different noise levels
- Experiment config-1
- Conducted on,
 - Dataset-2
 - RTX 2060

Figure: Avg. power consumption for different noise levels.

Inject background noise Disable power measurement

Mitigation: Disable power measurement

• Restrict Hypervisor-Level Commands:

- Implement restrictions on executing Nvidia-smi commands at the hypervisor level for running nvidia-smi.
- Effectiveness in Cloud Settings:
 - This approach is particularly effective in cloud environments where hypervisors control resource access.
- Limitations on Desktop Systems:
 - Less viable on desktop systems, where users typically have easy access to the resources.

- Conducted a detailed analysis of software-based power side channels using Nvidia-smi.
- Focused on power consumption patterns across core neural network components.
- Explored identification of different CNN architectures based on power data.
- Performed experiments on various devices, including physical and cloud-based GPUs.
- Developed strategies for mitigation of such attacks.

Thank You! Have any questions?